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Abstract: Ensuring railway safety is critical for preventing accidents and saving lives. This paper proposes an 

advanced deep learning-based system for real-time hazard detection on railway tracks. Using pre-trained 

Convolutional Neural Networks (CNN), including ResNet152V2, EfficientNetB7, and InceptionV3, the system 

identifies obstacles and recognizes railway signals. Extensive experiments on custom datasets demonstrate robust 

performance under various conditions, achieving a detection accuracy of over 90%. The proposed system is scalable 

for real-world applications with promising results in deployment scenarios. 
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1. Introductıon 
 

Railways are one of the most vital modes of transportation, connecting urban and rural areas while facilitating 

economic growth worldwide. However, the complexity of modern railway networks and increasing train frequencies 

present substantial challenges in ensuring safety. Accidents involving collisions, derailments, and track obstructions 

are often attributed to undetected hazards and missed signal interpretations. These incidents not only lead to 

significant financial losses but also endanger human lives, highlighting the critical need for robust safety 

mechanisms. Traditional methods of hazard detection and signal recognition primarily rely on human operators and 

mechanical systems. While these approaches have served well in the past, they are prone to human error and 

mechanical failures, particularly under adverse environmental conditions such as low light, fog, or heavy rain. 

Conventional systems often struggle with small or partially visible obstacles and fail to adapt to the dynamic nature 

of railway operations. CNN are explored in various image processing scenarios such as facial recording system for 

attendance assimilation [1]. Recent advancements in artificial intelligence (AI) and deep learning have 

revolutionized computer vision, enabling machines to detect and recognize objects with remarkable precision. The 

advent of Convolutional Neural Networks (CNNs), including models such as ResNet, EfficientNet, and Inception, 

has significantly improved the accuracy and efficiency of object detection systems. However, most existing AI 

solutions focus on generic applications like pedestrian detection or traffic management and lack customization for 

the unique challenges posed by railway environments.  
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In railway contexts, challenges include: 

 

Dynamic Backgrounds: The continuous motion of trains and varying track conditions require highly adaptive 

detection systems. 

Small and Distant Objects: Signal lights and obstacles often appear as small objects, necessitating models capable 

of fine-grained detection. 

Environmental Factors: Low visibility, uneven lighting, and cluttered surroundings make detection tasks more 

complex. 

 

To address these challenges, this research proposes a deep learning-based solution for real-time hazard detection 

and obstacle recognition tailored for railway systems. The system integrates state-of-the-art CNN architectures, 

specifically ResNet152V2, EfficientNetB7, and InceptionV3, to achieve high detection accuracy under diverse 

conditions. These models are chosen for their unique strengths: ResNet152V2 excels in deep feature extraction, 

EfficientNetB7 offers an optimal balance between accuracy and computational efficiency, and InceptionV3 is adept 

at multi-scale feature detection. This work also introduces a comprehensive dataset comprising railway scenarios, 

including signal lights and potential obstacles. Data augmentation techniques such as rotation, zooming, and flipping 

enhance the system’s robustness to various real-world conditions. The proposed solution achieves real-time 

performance, making it suitable for deployment in edge-computing environments like NVIDIA Jetson platforms.  

 

 

The remainder of this paper is organized as follows: Section 2 reviews existing research in hazard detection and 

railway safety. Section 3 outlines the proposed methodology, detailing the system architecture, data preparation, 

and model training process. Section 4 presents experimental results, including performance metrics and comparative 

analyses with existing methods. Finally, Section 5 concludes the paper and discusses potential future directions.  

 

2. Literature Review 
 

This research aims to bridge the gap between advanced AI techniques and practical railway safety solutions, 

providing a scalable, efficient, and accurate system that can significantly reduce railway hazards and improve 

operational safety. Object detection methods have evolved significantly over the past decade, from traditional 

computer vision techniques to modern deep learning-based approaches. Early methods relied on edge detection, 

Hough transforms, and optical flow but struggled with robustness and generalization. Single-shot detectors (e.g., 

YOLO, SSD) [2] and region-based approaches (e.g., Faster R-CNN) further improved the speed and accuracy of 

detection. 

 Railway-Specific Applications: Research on railway safety systems has largely focused on detecting pedestrians, 

vehicles, and objects near tracks. Recent works using YOLOv4[3][4] and custom datasets have shown promising 

results, but limitations remain in handling low-light conditions and small-sized objects. Deep Learning Revolution 

the advent of CNNs marked a turning point, with models like AlexNet, VGG, and ResNet demonstrating 

unprecedented accuracy in image classification and object detection tasks [5]. 
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3. CNN based proposed model of railway track hazard detection system 

 
The proposed system aims to address the challenges of railway hazard detection and signal recognition using 

advanced deep learning architectures. It integrates ResNet152V2, EfficientNetB7, and InceptionV3 models, 

leveraging their unique capabilities to ensure robust performance under diverse environmental conditions. The 

methodology consists of several stages, from data collection to model deployment as depicted in Figure 1. 

 

 

Fig 1: System Architecture and Workflow Showing The Data Flow from Image Acquisition through     Pre-

processing, Feature Extraction, Model Fusion, to Final Hazard Detection and Classification. 

 

 

3.1. Image Preprocessing and Noise Handling 

Before feeding images to the CNN models, we implement several preprocessing techniques to enhance image quality 

and reduce various types of noise that are common in railway environments. 

 

Canny Edge Detection Filter: Our primary noise filtering approach uses the Canny edge detection algorithm, which 

excels at identifying meaningful structural information from railway images while suppressing noise.  
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Our implementation of the Canny filter follows these key steps: 

I. Noise Reduction: Initial Gaussian smoothing with kernel size 5×5 to reduce random noise 

II. Gradient Calculation: Computation of intensity gradients using Sobel operators to identify potential 

edges 

III. Non-Maximum Suppression: Thinning of edges to single-pixel width for precise object boundary 

detection 

IV. Double Thresholding: Application of high threshold (0.09) and low threshold (0.05) values to identify 

strong and weak edges 

V. Edge Tracking by Hysteresis: Connection of strong edges with weak edges when they are part of the 

same structure 

The Canny filter proved particularly effective for railway applications as it: 

• Preserves critical edge information needed for signal light and obstacle detection 

• Reduces background noise that could lead to false positives 

• Enhances the contrast between railway tracks and potential obstacles 

• Maintains consistent detection quality across varying lighting conditions 

3.2. Additional Noise Handling Techniques 

• Gaussian Filter: Applied to reduce random noise while preserving edges critical for obstacle detection 

• Median Filter: Used for salt-and-pepper noise removal, particularly effective in low-light railway 

environments 

• Bilateral Filter: Implemented for preserving edges while smoothing, essential for signal light detection 

 

3.3. Noise Types Addressed 

• Gaussian Noise: Common in low-light conditions, reduced using Gaussian filtering with σ=1.5 

• Impulse Noise: Often present in railway environments due to electromagnetic interference, handled 

with adaptive median filtering 

• Motion Blur: Caused by camera movement on trains, mitigated using deconvolution techniques 

• Environmental Noise: Fog, rain, and dust particles are managed through contrast enhancement and 

histogram equalization 

 

3.4. Image Restoration Process 

• Initial noise estimation using statistical methods 

• Application of Canny filter for primary edge detection and noise suppression 

• Secondary filtering based on estimated noise type (Gaussian, median, or bilateral) 

• Contrast Limited Adaptive Histogram Equalization (CLAHE) for visibility enhancement 

• Edge preservation using guided filtering to maintain critical object boundaries 

 

3.5. Data Collection 

 Images were collected from railway environments, including tracks, signal lights, and various obstacles. The dataset 

features are as depicted in Table 1. The dataset was divided into Training Set comprising 70% of the data for model 
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training. Validation Set comprised 15% of the data for tuning hyper parameters and Test Set 15% of the data was 

used for performance evaluation. 

Table 1: Features of dataset 

Features Properties 

Categories 
Signal lights (red, green, yellow) and 

hazards (e.g., rocks, fallen objects) 

Diversity 

Captured under different weather 

conditions (fog, rain, clear skies) and 

times of day (daylight, dusk, night) 

Resolution 
All images were resized to 448x448 

pixels for uniformity 

Data Augmentation 

Rotation Random rotations up to ±40° 

Zoom 
Zooming in/out to simulate different 

viewing distances. 

Flipping Horizontal flips to add variability. 

Brightness 

Adjustment 

Changes to simulate low-light or 

overexposed conditions. 

 

 

 

3.6. CNN models 

The system employs three CNN models [6], each contributing to specific aspects of the detection process: 

 

ResNet152V2: A deep residual network that mitigates vanishing gradient issues, enabling it to learn complex 

features. It excels in extracting fine-grained details from images, crucial for identifying small obstacles or distant 

signal lights [7-10]. 

 

EfficientNetB7: Known for its optimal balance between accuracy and computational efficiency, EfficientNetB7 uses 

a compound scaling method to adjust network depth, width, and resolution. This makes it highly effective for 

resource-constrained environments like edge devices. 

 

InceptionV3: Designed for multi-scale feature detection, InceptionV3 uses inception modules to process visual data 

at different scales. This capability is essential for identifying both small and large objects in railway environments. 

 

3.7. Proposed Model 

A flowchart of the proposed model is shown in figure 2. All the process blocks of the diagram are mention below.  

Input from the Camera: A camera captures images of the railway track in real time. 

Load the Image on the System: The captured image is loaded onto the processing system for analysis. 

Preprocessing the Image: The image undergoes preprocessing techniques like:  

• Canny Edge Detection – Detects edges in the image. 

• Sharpening – Enhances the important details in the image. 

Feature Extraction: Important features are extracted from the processed image to identify signals and obstacles. 
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Signal Classification/Interpretation:  The extracted features are analysed to determine the type of signal (e.g., 

stop, go, caution). 

ResNet for Signal Recognition and Obstacle Detection:  A deep learning model (ResNet) is used to recognize 

signals and detect obstacles on the track. 

Output to the Train Driver:  The processed information is conveyed to the train driver, alerting them about track 

signals and potential obstacles for safe navigation. 

 

 

 

Fig 2. Flowchart of the Proposed Model 

 

 

3.8. Working Procedure of the Proposed Model: 

Raw images are captured and preprocessed (resized, normalized). Then Feature Extraction were performed. Each 

model processes the input image to extract relevant features, for example, 

• ResNet152V2: Deep, high-level features 

• EfficientNetB7: Balanced, generalized features. 

• InceptionV3: Multi-scale, diverse features. 

Feature Fusion is then employed where outputs from the three models are combined to enhance detection accuracy. 

The fused features are passed through fully connected layers to classify signals or detect hazards. Final predictions 

include bounding boxes for hazards and signal light classifications.  

 

The models are trained using categorical cross-entropy loss to minimize classification errors. This function is well 

suited for multi-class classification problems. The Adam optimizer is used for its adaptive learning rate, ensuring 

efficient convergence during training. To prevent overfitting, an early stopping mechanism monitors validation 

loss. Training stops if the loss does not improve over five consecutive epochs. The Hyper parameters comprised of 

Batch Size of 32 images with Learning Rate: 0.0001 and had 20 Epochs with early stopping. 
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4. Results and Discussions 

 

The experimental evaluation of the proposed system focuses on its accuracy, speed, and robustness in detecting 

hazards and recognizing signals in diverse railway environments. This section details the results obtained during 

testing, along with a comparative analysis against baseline methods and a discussion of the system’s strengths and 

limitations.  

The system was evaluated using the following metrics: 

• Accuracy: Percentage of correctly identified objects and signals. 

• Precision: Proportion of true positives among all positive predictions. 

• Recall: Proportion of true positives detected from all actual positives. 

• F1-Score: Harmonic mean of precision and recall, balancing false positives and false negatives. 

• Inference Speed: Measured in frames per second (FPS) to assess real-time capability. 

 

 

 

Fig 3. Training and Validation Loss Trends 

 

 

The models (ResNet152V2, EfficientNetB7, InceptionV3) were trained on the augmented dataset. The Training and 

validation performance metrics are illustrated in Figure 3 and Figure 4(a). The models achieved a training accuracy 

of over 92%. Validation Accuracy was consistently above 90%, indicating minimal overfitting. Both training and 

validation losses decreased steadily, converging after approximately 15 epochs. 
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Fig 4. (a) Training and Validation Accuracy Trends 

 

 

The system's detection capability was evaluated using the test set, comprising images of Signal lights (red, green, 

yellow), Hazards (obstacles, pedestrians, debris). The Key Results obtained for Signal Recognition Accuracy was 

95% for green, 93% for red, and 91% for yellow signals as shown in the Figure 4 (b).  

 

 

Fig 4. (b) Dataset Distribution 

 

 

Obstacle Detection Accuracy was 90%, with precise localization of small and distant objects. The system exhibited 

low false positive and false negative rates, demonstrating high reliability. The system was compared with YOLOv4 

and YOLOv3-based methods commonly used in object detection tasks. The Table 2 summarizes the comparative 

results. The comparative metrics are depicted in Fig.5. 

Table 2: Comparative Analysis  

 

Metric Proposed System YOLOv4 YOLOv3 

Accuracy 92.5% 89.2% 85.7% 

Inference Speed (FPS) 25 22 20 

False Positive Rate 5% 8% 12% 

False Negative Rate 6% 10% 14% 
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The proposed system outperformed YOLOv3 and YOLOv4 [11] in both accuracy and inference speed. The multi-

model approach (ResNet152V2, EfficientNetB7, InceptionV3) demonstrated superior robustness in detecting small-

sized and low-visibility objects. High Accuracy was achieved with reliable detection under challenging conditions, 

such as low-light environments or cluttered backgrounds. Real-Time Performance: Processes images at 25 FPS, 

meeting the demands of real-time railway monitoring. Scalability: Designed to operate on edge devices like NVIDIA 

Jetson boards, making it suitable for large-scale deployment. The system’s performance is limited by the diversity of 

the dataset. Future work should include more scenarios, such as extreme weather conditions and varying track 

geometries. 

 Model Complexity: While accurate, the use of three separate models increases computational requirements during 

training.  

Edge Case Failures: Rare cases, such as occluded signals or overlapping objects, still pose challenges.  

 

Dataset Expansion: One of the key areas for future development is the expansion of the dataset to include a broader 

range of scenarios. This includes more extreme weather conditions (e.g., snow, hail) and varied track geometries 

(e.g., sharp turns, tunnels). Augmenting the dataset will help improve the system’s robustness and accuracy, 

especially in real-world applications where conditions are unpredictable. 

 

Model Optimization: Although the system provides high accuracy, the use of multiple deep learning models increase 

computational overhead. Techniques like model pruning, quantization, or knowledge distillation could be explored 

to reduce model size and improve inference speed without sacrificing accuracy. Integration with IoT: Another 

promising direction for future work is integrating the system with a broader Internet of Things (IoT) infrastructure. 

This would allow for centralized monitoring and predictive analytics, enabling smarter and more proactive hazard 

detection across the entire railway network. Advanced Detection Mechanisms: Incorporating advanced techniques 

such as attention mechanisms or transformers could help improve detection in complex scenarios, such as occluded 

objects or overlapping signals. These models are particularly well-suited to handling objects in dynamic and cluttered 

environments, improving the system's ability to handle edge cases. 

 
 

 

 

Fig 5. Proposed Model Comparative Metrics 

 

Railway safety is a critical concern worldwide, given the increasing complexity of railway networks and the 

devastating consequences of accidents caused by undetected hazards or signal misinterpretations. This research 
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addresses these challenges by proposing a robust, AI-driven solution that integrates advanced deep learning models—

ResNet152V2, EfficientNetB7, and InceptionV3—for real-time hazard detection and signal recognition on railway 

tracks [12-14]. The results in Figure 6 describes the proposed model’s evaluation for various weather conditions and 

the comparison matrix is given as well. The proposed model gives higher accuracy compares to the YOLOv3 and 

YOLOv4. Object detection is very essential in many areas such as detecting or monitoring activity and movements 

in a sailing ship [15]. Our work can be very useful here as well. 

 

 

Fig 6. Environment Based Performance 

 

4.1. Real-Time Performance Analysis 

     
The system's real-time performance is guaranteed through multiple architectural and implementation techniques. The 

system uses parallel processing by having the three CNN models (ResNet152V2, EfficientNetB7, and InceptionV3) 

followed in a parallel processing pipeline, enabling concurrent feature extraction without sequential bottlenecks. This 

eradicates processing delays and increases detection speed. To enhance inference efficiency further, model weights 

are quantized to 16-bit precision so that memory demands and computation overhead can be lowered without 

compromising detection accuracy. The system also employs an adaptive frame processing mechanism where frame 

processing is given higher priority based on object density and motion patterns. This frame-skipping approach 

provides a consistent processing rate even in hard or dynamic cases by allocating computational power to high-

priority frames. Moreover, the system takes advantage of hardware acceleration by being deployed on NVIDIA Jetson 

platforms with the use of CUDA cores. GPU processing vastly decreases inference time in relation to CPU-based 

approaches, which leads to more rapid response times. A lightweight feature fusion module concatenates outputs of 

the three models via weighted averaging instead of intricate concatenation operations. This helps to reduce 

computational burden and GPU memory consumption without sacrificing high detection accuracy. End-to-end 

latency tests verify that the system always handles frames within 40 milliseconds, providing the important 25 FPS 

minimum required for real-time railway hazard detection use cases. This synergy of streamlined model architecture, 

adaptive computation, and hardware acceleration guarantees that the system fulfills the real-time demands of railway 

observation and hazard detection. 

 



Nimbalkar et. al Utkal University Journal of Computing & Communications, Vol. 2, Issue. 1 (2024) 

 

 

 

54 | P a g e  
 

 

 

 

4.2.  Scalability and Communication Protocol 

 

The proposed system's scalability is maintained through a modular, flexible architecture supporting large-scale 

deployment over various railway networks. The system has a multi-layered protocol stack for efficient data 

acquisition, processing, and communication. The Data Layer captures real-time video frames in railway environments 

through high-resolution cameras. The Processing Layer exploits the three CNN models' (ResNet152V2, 

EfficientNetB7, and InceptionV3) parallel processing power to extract features at the same time, supporting fast and 

reliable detection. The Communication Layer is executed by a Gradio interface, which facilitates real-time 

communication between the operator and the system. Identified hazards and signals are conveyed via the Gradio 

interface, which is an easy-to-use web-based environment for providing instantaneous operator warnings and system 

response. This supports rapid decision-making and recording of events detected for later analysis. The modular design 

supports effortless scalability through the deployment of extra processing units or extension of the camera network 

without a major modification to the core system. The use of Gradio-based communication allows for low-latency 

data exchange and real-time feedback, and the system is very flexible with respect to varied railway environments 

and scales of operations. 

 

 

4.3. Motion Picture Preprocessing 

 

Preprocessing of motion pictures is an essential process to achieve accurate and efficient detection of hazards in 

dynamic railway environments. The system preprocesses video frames in real-time, and each frame goes through a 

structured preprocessing pipeline to improve the quality and remove noise before being input to the CNN models. 

Then, frame extraction is conducted at a constant rate to provide consistency under various environmental and 

operating conditions. 

 

5. Conclusion 

 

The methodology applied in this study uses ensemble learning methods, specifically Random Forest (RF) and 

Gradient Boosting (GB) classifiers. These models were chosen due to their effectiveness in handling complex datasets 

with multiple features and their ability to generalize well on unseen data. RF works by building multiple decision 

trees and aggregating their predictions to gain good accuracy, while GB enhances model performance by iteratively 

focusing on errors made by previous models. Both classifiers were fine-tuned using Grid Search CV, which optimized 

the hyperparameters for improved model performance. The final model used a soft voting strategy, combining the 

predictions of both classifiers to produce a more reliable prediction. 
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