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Replication can change
a misincorporated base
into a permanent
mutation.

first round
replication (mis-
incorporation)

second round
replication
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Mismatch Repair System
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MutS embraces mismatch-containing DNA,
inducing a kink. In subsequent steps, MutS
recruits MutL and MutH, and the ATPase
activity of MutS catalyzes the hydrolysis of
ATP. MutH is an endonuclease that creates a
nick in the DNA near the site of the
mismatch. Next, an exonuclease digests the
nicked strand moving toward and beyond the
mismatch. Finally, the resulting single-strand
gap is filled in by DNA polymerase,
eliminating the mismatch.
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Mismatch Repair System

Dam methylation at replication fork."i?a) Replication generates hemimethylated DNA in
E. coli. (b) MutH makes incision in unmethylated daughter strand.
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Mismatch Repair System
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Directionality in mismatch repair: exonuclease removal of mismatched DNA.

For simplicity, DNA-bound MutH is shown as being immediately adjacent to MutS at the
mismatch. (a) Unmethylated GATC is 5’ of mutation. (b) Unmethylated GATC is 3’ of
mutation.
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Common types of hydrolytic DNA damage
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Deamination of cytosine create Uracil

Depurination of Guanine by hydrolysis
create apurinic deoxyribose

Deamination of 5-methyl cytosine
create thyamine
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Base excision Pathway
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The uracil glycosylase reaction: Uracil glycosylase hydrolyzes the glycosidic bond to release
uracil from the DNA backbone to leave an AP site (apurinic or, apyrimidinic site). AP
endonuclease cuts the DNA backbone at the 5 position of the AP site, leaving a 3’OH;
exonuclease cuts at the 30’position of the AP site, leaving a 5’-phosphate. The resulting gap is

filled in by DNA Pol I.
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ox0G:A repair.

fail-safe
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Oxidation of guanine produces 0xoG. The modified base can be repaired before replication
by DNA glycosylase via the base excision pathway. If replication occurs before the oxoG is
removed, resulting in the misincorporation of an A, then a fail-safe glycosylase can remove

the A, allowing it to be replaced by a C. This provides a second opportunity for the DNA
glycosylase to remove the modified base.
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Thymine dimer
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Direct Repair

Photoreactivation
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Photoreactivation. Ultraviolet irradiation causes formation of thymine dimers. Upon
exposure to light, DNA photolyase breaks the ring formed between the dimers to restore
the two thymine residues.
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Repair of pyrimidine dimers with photolyase.
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Monomeric pyrimidines
in repaired DNA



Nucleotide excision repair pathway
distortion

-

DNA polymerase,
DNA ligase \‘

(@) ATP hydrolysis promotes dimer formation by UvrA, which forms a
complex with a dimer of UvrB. The UvrA and UvrB complex scans DNA
to identify a distortion.

(b) UvrA leaves the complex, and the remaining UvrB dimer melts DNA
locally around the distortion.

(c) UvrC forms a complex with UvrB and creates nicks 3’ to the lesion and 5’
to the lesion.
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Nucleotide-excision repair in E. coli and humans
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Transcription-coupled DNA repair.
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transcription

RNA polymerase transcribes DNA iy, Pubble

normally upstream of the lesion. Upon
encountering the lesion in DNA, RNA
polymerase stalls and transcription stops.
RNA polymerase recruits the nucleotide
excision repair proteins to the site of the
lesion, and then it either backs up or
dissociates from the DNA to allow the
repair proteins access to the lesion.
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Mammalian pathway for NHEJ.

A heterodimer of Ku70 and Ku80 l
binds to broken DNA ends and recruits
the protein kinase DNA-PKcs. DNA-
PKcs, in turn, recruits Artemis, an
enzyme having exonuclease and
endonuclease activities, which

processes the broken ends. Finally, a e ccompn B O
complex of Ligase IV with XRCC4 XRCC4 '
and Cernunnos- XLF joins the broken

ends to each other.
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Cellular defenses against DNA damage.
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DNA damage
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Cells use DNA repair pathways to restore DNA
to its undamaged state. If DNA damage is
present when the genome is being replicated,
the cell must use DNA damage tolerance to
avoid a block in replication and a potentially
lethal double-strand  break.  Translesion
synthesis replicates across the DNA lesion, but
the lesion remains in the genome until a DNA
repair pathway can subsequently correct the
damage.
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SOS Repair System
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Translesion DNA synthesis DNA polymerase Il

Br{i 4} "\Sr
I v g
5@ >

/
B-clamp k»
Pol IV . PolV

Upon encountering a lesion in the ~ (PinB) _(Umub>C)
template during replication, DNA @\
Pol Il with its sliding clamp

dissociates from the DNA and is \
replaced by the translesion DNA o

polymerase, which extends DNA =@
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DNA polymerase IlI.
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a replicative
DNA polymerase

Alternative models for translesion synthesis

b replicative
DNA polymerase
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