2022
 Integrated MCA
 Computer Science and Applications UTKAL UNIVERSITY

Total Number of Questions $=\mathbf{7 0}$

Full Marks: 70
Time: 01 Hour 30 Minutes
\square
Roll no: \square

Instruction to the Candidates:

1. Do not open the booklet until the announcement is made.
2. Do not leave the examination hall until the examination is over.
3. All questions are compulsory and are of multiple choice types.
4. Each question shall have four answers (including one correct answer) and the examinee shall have to darken only the appropriate circle/oval using black / blue ball point pen.
5. There is no negative mark for wrong answer.
6. Each correct answer shall fetch one mark; each un-attempted question will fetch zero mark.
7. If more than one circle is darkened for one question, it will be treated as an incorrect answer.
8. Left side blank pages of question booklet can be used for rough work.
9. Infringement of examination rule of any type will lead to cancellation of evaluation of answer script.
10. Use of Electronic Gadgets including Smart watch or Cell phone is strictly prohibited.
11. Do not ask for clarification from the invigilator(s) regarding the question. In case any correction/clarification is deemed necessary, the invigilator(s) will announce it publicly.
12. The arithmetic mean of first 100 natural numbers is \qquad .
A. 50
B. 50.5
C. 51
D. 55
13. To compare the variability of two or more series, we compute \qquad .
A. a measure of central value
B. a measure of dispersion
C. a measure of coefficient of dispersion
D. None of these
14. Karl Pearson's coefficient of correlation is invariant of change of \qquad .
A. both origin and scale
B. origin only
C. scale only
D. neither origin nor scale
15. If two regression coefficients $b_{y x}$ and $b_{x y}$ are 5 and $\frac{1}{20}$, respectively, what is the value of the correlation coefficient?
A. 1
B. -1
C. 0.50
D. -0.50
16. A coin is tossed three times in succession. The number of sample points in sample space is \qquad -.
A. 2
B. 3
C. 6
D. 8
17. A non-leap year is selected at random. What is the probability that the year will have 53 Sundays?
A. $1 / 7$
B. $2 / 7$
C. $3 / 7$
D. 1
18. A card is drawn at random from a pack of cards. The probability that the card drawn is either a club or an ace is \qquad .
A. $1 / 4$
B. 1/13
C. $4 / 13$
D. $17 / 52$
19. If a random variable $X(=0,1)$ follows Bernoulli distribution with parameter θ, then its pmf is \qquad _.
A. $\theta^{1+x}(1-\theta)^{1-x}$
B. $\theta^{x}(1-\theta)^{1+x}$
C. $\theta^{x}(1-\theta)^{1-x}$
D. $\theta^{1+x}(1-\theta)^{x}$
20. If the distance between the points $(4, a)$ and $(1,0)$ is 5 , then the value of a is \qquad .
A. ± 4
B. 4
C. -4
D. 0
21. If the centroid of the triangle formed the points $(7, x),(y,-6)$ and $(9,10)$ is at $(6,3)$, then (x, y) is \qquad .
A. $(4,5)$
B. $(5,4)$
C. $(-5,-2)$
D. $(5,2)$
22. The radius of the circle $x^{2}+y^{2}-2 x+4 y+1=0$ is \qquad .
A. 1
B. 2
C. 4
D. $\sqrt{19}$
23. The Latus rectum of the parabola $(y-2)^{2}=8(x+3)$ is \qquad -.
A. 2
B. 4
C. 16
D. None of these
24. The plane $y-z+1=0$ is \qquad .
A. parallel to x - axis
B. perpendicular to x-axis
C. parallel to $x y$ - plane
D. perpendicular to $y z-$ plane
25. The outcomes of tossing a coin is a: \qquad .
A. simple event
B. mutually exclusive event
C. complementary event
D. compound event
26. Probability is expressed as: \qquad .
A. Ratio
B. Proportion
C. Percentage
D. All of these
27. If A and B are two events, the probability of occurrence of both A and B simultaneously is given as: \qquad .
A. $P(A)+P(B)$
B. $P(A \cup B)$
C. $P(A \cap B)$
D. $P(A) P(B)$
28. Given that $(A)=\frac{1}{3}, P(B)=\frac{3}{4}$ and $P(A \cup B)=\frac{11}{12}$, the probability $P(B / A)$ is:
A. $1 / 6$
B. $4 / 9$
C. $1 / 2$
D. None of these
29. Two dice were tossed by two players A and B. A throws 10 , the probability that B throws more than A is:
A. $1 / 12$
B. $1 / 6$
C. $1 / 18$
D. None of these
30. The probability of selecting a male or female is same. In an office of n persons, if the probability that $(n-1)$ males being selected is $\frac{3}{2^{10}}$, the value of n is:
A. 5
B. 3
C. 10
D. 12
31. If $A B=A$ and $B A=B$, where A and B are square matrices, then
A. $B^{2}=B$ and $A^{2}=A$
B. $B^{2} \neq B$ and $A^{2}=A$
C. $B^{2}=B$ and $A^{2} \neq A$
D. $B^{2} \neq B$ and $A^{2} \neq A$
32. If $A=\left[\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right]$, then A^{n} (where $n \in N$) equals to:
A. $\left[\begin{array}{cc}1 & n a \\ 0 & 1\end{array}\right]$
B. $\left[\begin{array}{cc}1 & n^{2} a \\ 0 & 1\end{array}\right]$
C. $\left[\begin{array}{cc}1 & n a \\ 0 & 0\end{array}\right]$
D. $\left[\begin{array}{cc}n & n a \\ 0 & n\end{array}\right]$
33. If A is a square matrix such that $A^{2}=A$, then $(I+A)^{3}-7 A$ is equal to:
A. A
B. $I-A$
C. I
D. $3 A$
34. If $A=\left[\begin{array}{ll}5 & x \\ y & 0\end{array}\right]$ and $A=A^{T}$, then
A. $x=0, y=5$
B. $x+y=5$
C. $x=y$
D. none of these
35. Which of given values of x and y make the following pairs of matrices equal? $\left[\begin{array}{cc}3 x+7 & 5 \\ y+1 & 2-3 x\end{array}\right]$ and $\left[\begin{array}{cc}0 & y-2 \\ 8 & 4\end{array}\right]$
A. $x=-\frac{1}{3}, y=7$
B. $x=-\frac{2}{3}, y=7$
C. $x=-\frac{1}{3}, y=-\frac{2}{5}$
D. not possible to find
36. If $A=\left[a_{i j}\right]$ is a square matrix of even order such that $a_{i j}=i^{2}-j^{2}$, then
A. A is a skew symmetric matrix and $|A|=0$
B. A is a symmetric matrix and $|A|=0$
C. A is a symmetric matrix
D. None of these
37. If A and B are square matrices such that $B=A^{-1} B A$, then $(A+B)^{2}$ is equal to:
A. O
B. $A^{2}+B^{2}$
C. $A^{2}+2 A B+B^{2}$
D. $A+B$
38. For any 2×2 matrix, if $A(\operatorname{Adj} A)=\left[\begin{array}{cc}10 & 0 \\ 0 & 10\end{array}\right]$, then $|\boldsymbol{A}|$ is equal to:
A. 20
B. 100
C. 10
D. 0
39. The matrix $\left[\begin{array}{ccc}5 & 10 & 3 \\ -2 & -4 & 6 \\ -1 & -2 & b\end{array}\right]$ is a singular matrix, if the value of b is:
A. -3
B. 3
C. 0
D. Non-existent
40. The number of solutions of the system of equations: $2 x+y-z=7, x-3 y+2 z=$ 1 and $x+4 y-3 z=5$ is
A. 3
B. 2
C. 1
D. 0
41. Evaluate $\lim _{x \rightarrow \infty} \frac{x^{2}+5}{x^{2}+4 x+3}$
A. 1
B. 2
C. 4
D. None of these
42. If $U=x^{y}$, then $\frac{\partial U}{\partial x}$ is
A. 0
B. $y x^{y-1}$
C. $x^{y} \log x$
D. None of these
43. The curve $y=x^{3}-3 x^{2}-9 x+9$ has a point of inflexion at;
A. $x=3$
B. $x=-3$
C. $x=-1$
D. $x=1$
44. Find the value of $\lim _{x \rightarrow \infty} \frac{x+2}{9 x^{2}+1}$
A. 0
B. $1 / 9$
C. $2 / 9$
D. 00
45. Given $y=5 e^{3 x}+\sin x, \frac{\partial y}{\partial x}$ is
A. $5 e^{3 x}+\cos x$
B. $15 e^{3 x}+\cos x$
C. $15 e^{3 x}-\cos x$
D. $2.66 e^{3 x}-\cos x$
46. Evaluate $\int \frac{X+2}{(X+1)^{2}} d x$
A. $\quad \log |X+1|-\frac{1}{X+1}+c$
B.
$\log |X+2|-\frac{1}{X+2}+c$
C. $\log |X+1|-\frac{1}{X+2}+c$
D.
$\log |X+2|-\frac{1}{X+1}+c$
47. A solution of the differential equation $\left(\frac{d y}{d x}\right)^{2}-x \frac{d y}{d x}+y=0$ is
A. $y=2$
B. $y=2 x$
C. $y=2 x-4$
D. $y=2 x+4$
48. Which of the following is an expansion of $e^{2 x}$?
A. $1+2 x+2 x^{2}+2 x^{3}+2 x^{4}+\cdots \cdots \cdots \cdots$
B. $1+2 x+4 x^{2}+8 x^{3}+16 x^{4}+\cdots \cdots \cdots \cdots$
C. $1+2 x+2 x^{2}+\frac{4}{3} x^{3}+\frac{2}{3} x^{4}+$
D. $1+\frac{x}{2}+\frac{x^{2}}{4}+\frac{x^{3}}{8}+\frac{x^{4}}{16}+\cdots \ldots \ldots .$.
49. Determine the value of K for which the following function is continuous at $\mathrm{X}=3$
$f(X)=\left\{\begin{array}{l}\frac{X^{2}-9}{X-3}, X \neq 3 \\ K, X=3\end{array}\right.$
A. $K=6$
B. $K=3$
C. $K=5$
D. $K=9$
50. If $x=r \cos \theta, y=r \sin \theta$, then $\frac{\partial(x, y)}{\partial(r, \theta)}$ is equal to
A. -1
B. r
C. $1 / \mathrm{r}$
D. 1
51. The point on the curve $y=12 x-x^{2}$ where the tangent is parallel to x -axis is
A. $(0,0)$
B. $(2,16)$
C. $(3,9)$
D. $(6,36)$
52. $\lim _{n \rightarrow \infty} \frac{1^{2}+2^{2}+\ldots+n^{2}}{n^{3}}=$
A. $1 / 6$
B. $1 / 3$
C. $1 / 2$
D. None of these
53. $\lim _{x \rightarrow \infty}\left(1+\frac{2}{x}\right)^{x}$ equals
A.e
B. ∞
C. e^{2}
D. $1 / \mathrm{e}$
54. The integrating factor of the differential equation $\frac{d y}{d x}(x \log x)+y=2 \log x$, is given by
A. ex
B. $\log x$
C. $\log (\log x)$
D. x
55. $\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-2 y=0$ has the solution
A. $y=c_{1} e^{-2 x}+c_{2} e^{-x}$
B. $y=c e^{-2 x}$
C. $y=c_{1} e^{-2 x}+c_{2} e^{-x}+c_{3}$
D. None of these
56. The direction cosines of the line joining the points $(1,2,-3)$ and $(-2,3,1)$ are:
A. $(-3,1,4)$
B. $(-1,5,-2)$
C. $\left(\frac{-3}{\sqrt{26}}, \frac{1}{\sqrt{26}}, \frac{4}{\sqrt{26}}\right)$
D. $\left(\frac{-1}{\sqrt{30}}, \frac{5}{\sqrt{30}}, \frac{-2}{\sqrt{30}}\right)$
57. The equation of Z-axis is
A. $x=0, z=0$
B. $y=0, z=0$
C. $x=0, y=0$
D. $x=k, y=-k, \quad k \neq 0$
58. If $\overrightarrow{\boldsymbol{a}}, \overrightarrow{\boldsymbol{b}}, \overrightarrow{\boldsymbol{c}}$ are three vectors such that $|\vec{a}|=2,|\vec{b}|=3,|\vec{c}|=4$ and $\overrightarrow{\boldsymbol{a}}+\overrightarrow{\boldsymbol{b}}+\overrightarrow{\boldsymbol{c}}=0$ then the value of $\overrightarrow{\boldsymbol{b}} \overrightarrow{\boldsymbol{c}}+\overrightarrow{\boldsymbol{c}} \overrightarrow{\boldsymbol{a}}+\overrightarrow{\boldsymbol{a}} \overrightarrow{\boldsymbol{b}}$ is equal to
A. 19/2
B. $-19 / 2$
C. 29/2
D. $-29 / 2$
59. If X and Y are two sets, $X \cap(Y \cup X)^{c}$ equals
A. X
B. Y
С. \varnothing
D. None of these
60. Suppose $A_{1}, A_{2}, \ldots \ldots, A_{30}$ are thirty sets each having 5 elements and $B_{1}, B_{2}, \ldots \ldots, B_{n}$ are n sets each with three elements such that $S=\bigcup_{i=1}^{30} A_{i}=$ $\bigcup_{j=1}^{n} B_{j}$ and each element of S belongs to exactly 10 of $A_{i}^{\prime} s$ and exactly 9 of B_{j}^{\prime} s, the $n=$
A. 15
B. 3
C. 45
D. None of these
61. Let $f: R \rightarrow R$ be a function defined by $f(x)=\frac{e^{|x|}-e^{-x}}{e^{x}+e^{-x}}$, then
A. f is both one-one and onto
B. f is one-one but not onto
C. f is not on-one but onto
D. f is neither one-one nor onto
62. The difference between the largest number and the smallest number formed from the 5 digits $0,1,2,3,4$ using each digit exactly once is \qquad _.
A. 41769
B. 41967
C. 41976
D. None of these
63. There are 12 towns grouped into four zones with three towns per zone. It is intended to connect the towns with telephone lines such that every two towns are connected with three direct lines if they belong to the same zone and with only one direct line otherwise. How many direct telephone lines are connected?
A. 60
B. 75
C. 80
D. 90
64. From a point P on a level ground, the angle of elevation of the top tower is 30°. If the tower is 100 m high, the distance of point P from the foot of the tower is:
A. 149 m
B. 156 m
C. 173 m
D. 200 m
65. 3 pumps, working 8 hours a day, can empty a tank in 2 days. How many hours a day must 4 pumps work to empty the tank in 1 day?
A. 16
B. 12
C. 11
D. 10
66. In one hour, a boat goes $11 \mathrm{~km} / \mathrm{hr}$ along the stream and $5 \mathrm{~km} / \mathrm{hr}$ against the stream. The speed of the boat in still water (in $\mathrm{km} / \mathrm{hr}$) is \qquad -.
A. $3 \mathrm{~km} / \mathrm{hr}$
B. $5 \mathrm{~km} / \mathrm{hr}$
C. $8 \mathrm{~km} / \mathrm{hr}$
D. $9 \mathrm{~km} / \mathrm{hr}$
67. A man has Rs. 480 in the denominations of one-rupee notes, five-rupee notes and tenrupee notes. The number of notes of each denomination is equal. What is the total number of notes that he has?
A. 45
B. 60
C. 75
D. 90
68. In how many different ways can the letters of the word "LEADING" be arranged in such a way that the vowels always come together?
A. 360
B. 480
C. 720
D. 5040
69. If one-third of one-fourth of a number is 15 , then three-tenth of that number is
\qquad
A. 35
B. 36
C. 45
D. 54
70. A bus for Delhi leaves every thirty minutes from a bus stand. An enquiry clerk told a passenger that the bus has already left 10 minutes ago and the next bus will leave at 9.35 am . At what time did the enquiry clerk give this information to the passenger?
A. 9.15 AM
B. 9.10 AM
C. 9.20 AM
D. None of the Above
71. The average noon temperature for Monday, Tuesday, and Wednesday was 53° and for Tuesday, Wednesday and Thursday was 56°. If the noon temperature on Thursday was 60°, find the noon temperature on Monday?
A. 52°
B. 51°
C. 54°
D. 53°
72. Junk e-mail is also called \qquad .
A. Spoof
B. Spam
C. Spool
D. Sniffer
73. WAN stands for \qquad .
A. Wap Area Network
B. Wide Area Network
C. Wide Array Net
D. Wireless Area Network
74. A computer cannot "boot" if it does not have the \qquad .
A. Compiler
B. Loader
C. Operating System
D. Assembler
75. The main component of first generation computer was \qquad .
A. Transistors
B. Vacuum Tubes and Valves
C. Integrated Circuits
D. None of above
76. SMPS stands for \qquad .
A. Switched Mode Power Supply
B. Start Mode Power Supply
C. Store Mode Power Supply
D. Single Mode Power Supply
77. Which one of the following is NOT a computer language?
A. LINUX
B. BASIC
C. COBOL
D. $\mathrm{C}++$
78. The ability to recover and read deleted or damaged files from a criminal's computer is an example of a law enforcement known as \qquad .
A. robotics
B. simulation
C. computer forensics
D. animation
79. Which of the following are the functions of an operating system?
A. Allocates resources
B. Monitors activities
C. Manages disks and files
D. All of these
80. A file is of size 10 KBytes. What is the size of the file in bits?
A. 10,000
B. 81,920
C. 10,240
D. 80,240
81. In \qquad mode, the communication channel is used in both directions at the same time?
A. Full-duplex
B. Simplex
C. Half-duplex
D. None of these
