LIPID REACTIONS

Technologically significant reactions (oleochemistry)

1. esterification

```
enzymatic (lipases)
nonenzymatic (acid and base catalysis)
```

1.1.esterifications

```
20-100 °C, H<sub>2</sub>SO<sub>4</sub>, HCl
```

$$R-OH + R^1-COOH \rightarrow R^1-COOR + H_2O$$

glycols, alditols + $FA \rightarrow emulsifiers$

glycerol + FA (hydroxyl acids) \rightarrow emulsifiers (MAG and DAG)

1.2. interesterification

acidolysis

 R^{1} -COOR + R^{2} -COOH $\rightarrow R^{2}$ -COOR + R^{1} -COOH

without catalyst, 250-300 °C; catalyst H₂SO₄, 150-170 °C

TAG + abietic acid \rightarrow varnish

TAG + phthalic acid \rightarrow glyptals

(drying oil – similar to natural resins)

H H

abietic acid derived from lat. word *Abies* = fir; nonvolatile component of turpentine

exchange lower/higher FA coconut oil, palm kernel fat enzymatically using lipase - synthesis of "structured TAG" CBE fat (Cocoa Butter Equivalent) = POSt + StOSt

alcoholysis

$$R^1$$
-COOR + R^2 -OH $\rightarrow R^1$ -COOR²+ R-OH

NaOH, NaOR 20 °C and more, H_2SO_4 ~ 100 °C, without catalyst 250 °C, enzymatically by lipases

methanolysis → Me-esters, biodiesel

butanolysis → Bu-esters (plasts softenings)

glycerolysis → parcial esters (emulsifiers)

transesterification

$$R^{1}$$
-COOR + R^{2} -COOR³ \rightarrow R^{1} -COOR³ + R^{2} -COOR

without catalyst \sim 250 °C, acidic, basic catalyst < 100 °C, enz. lipases in the resulting mixture the distribution of FA in TAG is accidental

randomisation (melting point higher for about 20 °C)

2. molecule splitting -hydrolysis and saponification

$$R^{1}$$
-COOR $\rightarrow R^{1}$ -COOH + R-OH

autocatalysed hydrolysis at high temperatures over 200 °C saponification by hydroxides soaps

3. hydrogenation

-CH=CH-
$$\rightarrow$$
 -CH₂-CH₂-

H₂, 150-200 °C, Ni-catalyst; 0,1-0,2 MPa

hardened fats (hardening, hydrogenation)

stability against oxidation, consistency, absence of trans-acids

 $k_1 > k_2$ selective (dienic from trienic, rape oil)

 $k_1 < k_2$ nonselective

side-reactions

- positional isomerisation (unusual isomers)
- cis/trans isomerisation (30-45% trans-isomers)

Rancidity of oils and fats

- hydrolytic rancidity
- scented rancidity
- reversion
- oxidation

hydrolytic rancidity

- enzymatic reactions: lipases (butter, coconut oil, palm oil)
- chemical reaction: frying

$$TAG \rightarrow FA + DAG + MAG$$

- butter, milk, coconut oil, palm oil
- chocolate
- cheese

undesirable partly desirable desirable

threshold value (mg/kg) of free fatty acids

FA	cream	COCO	nut fat
	smell taste	smell	taste
C4:0 rancid	50 60	35	160
C6:0 rancid	85 105	25	50
C8:0 moldy, rancid, soapy	200 120	> 1000	25
C10:0 soapy	> 400 90	> 1000	15
C12:0 soapy	> 400 130	> 1000	35
C14:0 soapy	> 400 > 400	> 1000	75

flavor of polyunsaturated fatty acids in emulsions (taste of the corresponding TAG is neutral)

FA threshold value μmol/l		taste	
oleic	9-12	bitter, spicy	
linoleic	4-6	bitter, spicy	
elaidic	22	weakly spicy	
α -linolenic	3-6	weakly spicy	
γ-linolenic	0.6-1.2	weakly spicy	
arachidonic	6-8	weakly spicy	

scented rancidity

- enzymatic reaction: microorganisms and their enzymes
- FA with short and medium carbon chain
- milk fat, coconut oil, palm oil undesirable
- mould cheeses desirable

methylketon	smell	threshold value
		μg/kg (in water)
pentan-2-on	fruity (bananas)	2300
hexan-2-on	fruity (bananas)	930
heptan-2-on	flowery, herbal	650
octan-2-on	flowery	190
nonan-2-on	flowery, meaty	190

reversion

typical for soybean oil (or other oil containing linolenic acid)

chemical r. (autoxidation) → hydroperoxides → derivatives of furan

off-flavour:

the smell of varnish, fish, grass, beans

refining can remove odor, but the defect returns
reversion

OXIDATIVE RANCIDITY

oxidation of the hydrocarbon chains

nonenzymatic reactions

atmospheric oxygen (triplet/ ³O₂) autoxidation

<u>reactive oxygen species</u> (singlet/ ${}^{1}O_{2}$, radicals, $H_{2}O_{2}$)

5 excited states

 $^{1}\Sigma$ (sigma) $^{1}\Delta$ (délta)

157 kJ

93,8 kJ

formation in food: photochemical reactions with the participation of photosensitizers from ³O₂

pigments (riboflavin, chlorophyll, heme)

free radicals

- •O₂ (superoxide radical)
- OH (hydroxyl radical)
- enzymatic reactions

lipoxygenases (formerly lipoxidases)

consequences

negative

lowering of sensory quality

fats, oils, foods cosmetics, gasoline

lowering of nutritive value

reaction of oxidised lipids with proteins

<u>lowering of hygiene-toxicological quality</u>

toxic products

aging, illness (in vivo)

positive

formation of aromatic compounds

nonenzymatic reactions oxidation by triplet oxygen, autoxidation

general mechanism of hydrocarbon chain autoxidation (radical reaction)

1. induction stage

1. propagation stage

$$R \bullet + O_2 \rightarrow R - O - O \bullet$$
 hydroperoxyl radical $R - O - O \bullet + R - H \rightarrow R - O - O - H + R \bullet$ hydroperoxide up to thousands of segments (influence temperature, pO_2 etc.) hydroperoxide= primary oxidation product decomposition of hydroperoxides

3. terminal stage

mutual radical reactions, polymers of various types $R \bullet + R \bullet \rightarrow R - R \qquad C-C \text{ bond}$ $R \bullet + R-O-O \bullet \rightarrow R-O-O-R \qquad C-O-O-C \text{ bond (peroxide)}$ $2 R-O-O \bullet \rightarrow R-O-O-R + O_2$

initiation

mainly fotosensitized (photo-oxidation) and enzymatic reactions

singlet oxygen

hydroperoxide

"first radicals" from hydroperoxide decomposition

hydroperoxide decomposition

monomolecular decomposition

 $R-O-O-H \rightarrow R-O + OH$ alkoxyl radical

bimolecular decomposition (at higher concentrations of ROOH)

$$2 \text{ R-O-O-H} \rightarrow \text{ R-O-O} + \text{ R-O} + \text{ H}_2\text{O}$$

reactivity of radicals

$$HO \bullet > R-O \bullet > R-O-O \bullet$$

subsequent fate of alkoxyl radicals

decomposition → aromatic compounds

recombination in terminal stage

$$R \bullet + R - O \bullet \rightarrow R - O - R$$
 bond C-O-C
 $R - O \bullet + R - O - O \bullet \rightarrow R - O - R + O_2$

oxidation of unsaturated acids (at ordinary temperature)

O:L:LL=1:10:100

structure	dissociation energy (kJ /	/ mol)
-----------	---------------------------	--------

H-CH₂- 422

 CH_3 -CH-H- 410

-H-CH-CH=CH- 322

-CH=-CH-H-CH-CH=CH- 272

oxidation of unsaturated acids ambient temperature

oxidation of saturated acids temperatures of frying and roasting

oxidation of oleic acid

→ mixture of 4 hydroperoxides in ratio of cca 1:1:1:1

geometric isomers

9-hydroperoxy-10-enoic acid

positional isomers

cis or trans

- mainly *trans*

10-hydroperoxy-8-enoic acid

oxidation of linoleic acid

 \rightarrow mixture of 7 hydroperoxides, mostly 9- and 13-

(E,Z)-9-hydroperoxy-10,12-dienoic acid (Z,E)-13-hydroperoxy-9,11-dienoic acid

0-0H

oxidation of linolenic acid

-CH₂-CH⁻CH⁻CH⁻CH⁻CH₂-

→mixture of many hydroperoxides – mostly 9-, 12-, 13- and 16with 2 conjugated double bonds and one isolated bond

0-0H

subsequent reaction of hydroperoxides

→ secondary autooxidation products

• same number of C atoms epoxy-, hydroxy-, oxo-acids

• lower number aldehydes, hydrocarbons and others

higher number various polymers

formation of epoxy-, hydroxy- a oxo-compounds

$$-CH=CH-CH_2- \xrightarrow{R-O-O} \bullet -CH-CH-CH_2- \xrightarrow{-R-O} \bullet -CH-CH_2- \xrightarrow{-R-O} \bullet -CH_2- \xrightarrow{-R-O} \bullet$$

formation of aldehydes and hydrocarbons

volatile secondary products - flavour compounds general mechanisms

for example 9-hydroperoxy-10,12-fatty acid from linoleic acid

subsequent reaction of aldehydes

some of aldehydes arising by oxidation of unsaturated acids

primary aldehyde	aldehyde after isomeration	hydroperoxy acid
(Z)-undec-2-enal	(E)-2-undecenal	(Z)-8-hydroperoxyoctadec-9-enoic
(<i>E</i>)-dec-2-enal		(E)-9-hydroperoxyoctadec-10-enoic
nonanal		(E)-10-hydroperoxyoctadec-8-enoic
octanal		(Z)-11-hydroperoxyoctadec-9-enoic
(<i>Z,Z</i>)-undeca-2,5-dienal	(E,E)-undeca-2,4-dienal	(Z,Z)-8-hydroperoxyoctadeca-9,12-dienoic
(<i>E,Z</i>)-deca-2,4-dienal	(<i>E,E</i>)-deca-2,4-dienal	(<i>E,Z</i>)-9-hydroperoxyoctadeca-10,12-dienoic
(<i>Z</i>)-non-3-enal	(<i>E</i>)-non-2-enal	(<i>E,Z</i>)-10-hydroperoxyoctadeca-8,12-dienoic
(<i>Z</i>)-okte-2-nal	(<i>E</i>)-okt-2-enal	(<i>Z,Z</i>)-11-hydroperoxyoctadeca-9,12-dienoic
(E)-hept-2-enal		(<i>Z,E</i>)-12-hydroperoxyoctadeca-9,13-dienoic
hexanal		(<i>Z,E</i>)-13-hydroperoxyoctadeca-9,11-dienoic
pentanal		(<i>Z,Z</i>)-14-hydroperoxyoctadeca-9,12-dienoic
(<i>E,Z,Z</i>)-deca-2,4,7-trienal		(<i>E,Z,Z</i>)-9-hydroperoxyoctadeca-10,12,15-trienoic
(<i>Z,Z</i>)-nona-3,6-dienal	(<i>E,Z</i>)-nona-2,6-dienal	(<i>E,Z,Z</i>)-10-hydroperoxyoctadeca-8,12,15-trienoic
(<i>Z,Z</i>)-octa-2,5-dienal	(<i>E,E</i>)-octa-2,4-dienal	(Z,Z,Z)-11-hydroperoxyoctadeca-9,12,15-trienoic
(<i>E,Z</i>)-hepta-2,4-dienal	(<i>E,E</i>)-hepta-2,4-dienal	(Z,E,Z)-12-hydroperoxyoctadeca-9,13,15-trienoic
(Z)-hex-3-enal	(<i>E</i>)-hexe-2-nal	(Z,E,Z)-13-hydroperoxyoctadeca-9,11,15-trienoic
(<i>Z</i>)-pent-2-enal	(<i>E</i>)-pent-2-enal	(Z,Z,Z)-14-hydroperoxyoctadeca-9,12,15-trienoic
propanal		(Z,Z,E)-16-hydroperoxyoctadeca-9,12,14-trienoic

organoleptic properties of aldehydes

aldehyde	smell	precursor
propanal	pungent	linolenoic acid
pentanal	pungent	linoleic acid
hexanal	tallowish, grass	linoleic acid
heptanal	oily, greasy	oleic acid
nonanal	tallowish	linolenoic acid
(<i>E</i>)-pent-2-enal	oily, greasy, grass	linolenoic acid
(<i>Z</i>)-hex-3-enal	Grass	linolenoic acid
(<i>E</i>)-hex-2-enal	oily, greasy, grass	linolenoic acid
(<i>E</i>)-hept-2-enal	oily, greasy	linoleic acid
(<i>Z</i>)-okt-2-enal	after walnuts	linoleic acid
(<i>E</i>)-okt-2-enal	oily, greasy	linoleic acid
(<i>E</i>)-non-2-enal	oily, greasy	linoleic acid
(<i>E,Z</i>)-hepta-2,4-dienal	oily, greasy,	linolenoic acid
	after frying fats	
(<i>E,E</i>)-hepta-2,4-dienal	oily, greasy	linolenoic acid
(<i>Z,Z</i>)-nona-3,6-dienal	after cucumber	linolenoic acid
(<i>E,Z</i>)-nona-2,6-dienal	after cucumber	linolenoic acid
(<i>E,Z</i>)-deca-2,4-dienal	after frying fats	linoleic acid
(E,E)-deca-2,4-dienal	after frying fats	linoleic acid
(<i>E,Z,Z</i>)-deca-2,4,7-trienal	after fish oil	linolenoic acid

polymers formation usually by reaction of two radicals

C-C bonds

ether bonds

peroxide bonds

two-fold C-C bond cyclopentane cycle

tetrahydrofurane bonds

C-C and peroxide bonds

two-fold bond C-C cyclohexenic cycle

tetrahydropyrane bonds

dioxane bonds

oxidation with singlet oxygen

formation

- photooxidation (photosensitizers)
- enzymatic reaction (photosynthesis)
 addition to the double bond, ~ 1000 x faster than oxidation

scavengers of singlet oxygen and hydroxyl radicals

- can quench singlet oxygen
- β-carotene and other carotenoides
- tocopherols
- ascorbic acid
- 1 carotenoid + $^{1}O_{2}$ → 3 carotenoid + $^{3}O_{2}$
- ³ carotenoid (excited triplet state) \rightarrow ¹ carotenoid

enzymatic oxidation

lipoxygenases (lipoxidases, linoleate: O₂ oxidoreductase)

$$E_{18:2} = 17 \text{ kJ/mol}$$

unsaturated FA \rightarrow hydroperoxide of UFA (optically active)

C_{18:2} 9- a 13-hydroperoxides C_{18:3} 9- a 13-hydroperoxides 10-hydroperoxides 10-hydroperoxides

specifity (regio-, stereo-) example C_{18:2}

soya \rightarrow (13*S*)-, 9-*cis*-, 11-*trans*-

tomatoes \rightarrow (9*S*)-, 10-*trans*-, 12-*cis*

mushrooms \rightarrow (10*S*)-, 8-*trans*-, 12-*cis*-

negative, positive consequences

animals: decomposition by glutathionperoxidases

plants and mushrooms: splitting by lyases, isomerases, aroma compounds

termic reactions

geometric isomerization

positional isomerization

cyclization

polymerization

Diels-Alder reaction

$$R_1$$
 R_2
 R_4
 R_4

inhibition of autoxidation

- temperature
- air (oxygen)
- radiation (UV)
- composition of the fat (ratio of SFA/UFA)
- inhibitors (antioxidants, synergists)

antioxidants

classification according to origin

- natural (mostly tokopherols, phenols)
- synthetic (mostly phenols)

classification according to activity (mechanisms)

- primary (reaction with radicals)
- secondary (reduction of R-O-OH)

phenolic antioxidants (mechanism of action)

$$R-O-O \bullet + H-A \rightarrow R-O-O-H + A \bullet$$

$$\begin{matrix} & & & \\ & & & \\ R & & & \\ & & & \\ \end{matrix}$$

H-A (antioxidant)

A (antioxidant radical)

main reactions

$$2A \bullet \rightarrow A-A$$

$$A \bullet + R-O-O \bullet \rightarrow R-O-O-A$$

$$A \bullet + R-O \bullet \rightarrow R-O-A$$

side reactions (> 0,01%)

$$A \bullet + O_2 \rightarrow A-O-O \bullet$$

$$A-O-O \bullet + R-H \rightarrow A-O-O-H + R \bullet$$

main natural antioxidants

main synthetic antioxidants

applications

BHA, BHT, tocopherols, dodecylgallate TBHQ, propygallate

type of emulsion: oil/water pure fats (oils)

antioxidant effect on the process of autoxidation reactions

P - peroxide number

t – time of autoxidation at 60°C (days)

1 - antioxidant BHA = 0% 2 - BHA=0,02%

 I_1 a I_2 = induction periods

protective factor PF = $(I_2-I_1)/I_1$

PF, lard, 0,02% α-tocopherol 5 BHT 6 γ-tocopherol 15 BHA + BHT 12 BHA 9.5 octylgallate 6