

- **¤** Controlled by the differential expression of genes in Drosophila.
- purpose prosophila has a **holometabolous** method of development, i.e. three distinct stages of body plans: **larva**, **pupa**, and **adult**.

Life cycle by days	
DAY 0	Female lay eggs
DAY 1	Egg hatch
DAY 2	1 st instar
DAY 3	2 nd instar
DAY 5	3 rd instar
DAY 7	Pupa formation(120 days after egg laying)
DAY 11- 12	Eclosion(Adult emerges from the pupa case) Females become sexually active 8-10 hrs after Eclosion.

DROSOPHILA FERTILIZATION

Eggs are activated prior to fertilization where the oocyte nucleus has resumed **meiotic division**.

- stored mRNAs in them, begin the translation process.
- Sperm enter at the micropyle.
- prevents polyspermy.

EARLY DEVELOPMENT OF DROSOPHILA

- After fertilization, a series of superficial cleavages occur.
- Nuclei begin dividing centrally and migrate toward the edges.
- •Few nuclei migrate to the posterior end, to form *pole cells*.
- pole cells gives rise to the adult gametes.

Superficial Cleavage

- A meroblastic cleavage, where mitosis occurs without cytokinesis.
- Results in many nuclei, which migrate to the periphery of a centrolecithal egg)
- Syncytial blastoderm stage
- zygotic nuclei undergo 8 divisions and migrate to the periphery
- karyokinesis continues
- Cellular blastoderm stage
- following division 13, the oocyte plasma membrane folds inward
- partitions off each nucleus and associated cytoplasm
- constricts at basal end

GASTRULATION

- it can form mesoderm, endoderm, ectoderm
- Cells fold inward to form ventral furrow
- Embryo bends to from *cephalic furrow*
- Pole cells are internalized, and endoderm invaginates.
- Ectoderm converges and extends along midline to form Germ Band

GERM BAND

- Wraps around the embryo(dorsal surface), the A-P axis of the embryo is marked
- Body segments begin to form.
- Organs are beginning to form
- Groups of cells called *imaginal discs* are developed, these cells will form adult organs

DROSOPHILA LARVAE

- 3 larval stage.
- After gastrulation, 1st instar larvae is formed
- Has head and tail end
- Generally the same type of body plan as adult
- 3rd "instar" larvae:- form Pupae and Adult

T1- legs
T2 - legs & wings
T3 - legs & halteres

A/P and D/V axes established by interactions between the developing oocyte and its surrounding follicle cells

DROSOPHILA BODY PLAN

- 3 thoracic segments
- 8 abdominal segments

GENETICS OF AXIS SPECIFICATION IN DROSOPHILA

Controlled by a variety of genes:-

- Maternal effect genes
- Gap genes
- pair-rule genes
- Segment polarity genes
- Homeotic selector genes

Anterior-Posterior Body Plan

A *hierarchy* of gene expression controls the anterior-posterior body plan.

1. Maternal effect genes (e.g. bicoid, nanos)

Establish polarity:

- Their mRNAs are differentially placed in eggs
- activate or repress zygotic genes
- 2. Gap genes: first zygotic genes which is expressed.
- Divide embryo into regions.
- Map out the embryo's anterior-posterior axis
- activated or repressed by maternal effect genes

bicoid gradient

3. pair-rule genes;

Establish segmental plan

- regulated by combinations of gap genes
- divide the embryo into the periodic pattern of seven transverse bands:- parasegments

4. Segment polarity genes;

Set boundaries of segments:- establish A-P for each segment

- activated by pair-rule genes
- code for variety of proteins
- divide the embryo into 14 segmental units

even-skipped (red), fuschi tarazu (black)

engrailed

5. Homeotic selector genes; Master regulatory genes

- Provide segmental identity
- By interactions of gap, pair-rule, and segment polarity

proteins

- determines developmental fat
- They possess homologous segments.
- 180-nucleotide sequence = homeobox
- Encodes 60-amino-acid homeodomain

Hox genes :-

Homeotic genes(Hox genes) encode nuclear proteins

- have a DNA binding motif:-homeodomain.
- The products are transcription factors that specify segment identity
- The genes are activated by the concentration gradients of gap gene products.
- e.g. *Ubx* is switched on by hunchback.

fushi tarazu and even skipped can sharpen:- *Ubx* expression, to specify parasegments..

Hierarchy of Gene Activity

- ☐ Maternal genes
- ☐ Segmentation genes of embryo
 - Gap genes
 - Pair-rule genes
 - Segment polarity genes
- ☐ Homeotic genes of the embryo
- ☐ Other genes of the embryo

Drosophila Body Plan - Egg Stage

Oogonium divide into 16 cells

- 1 oocyte.
- 15 nurse cells (nurse cells contribute mRNA, proteins, and cytoplasm) all interconnected.
- Body axes are determined in the egg by the distribution of Maternal mRNAs and proteins.

Anterior-Posterior Axis Formation

Model of Anterior-Posterior Patterning

By mRNA found in oocytes (maternal messages)

Early cleavage:embryo proteins

- hunchback translation repressed by Nanos.
- caudal translation repressed by Bicoid.

Coordinate action of bicoid and nanos protein :produces the A-P axis of the early embryo

Bicoid Mutants

Thorax Ab Abdomen Te

Manipulating Bicoid

H Head A Acron

Thorax Ab Abdomen Te Telson

Dorsal - Ventral Axis Formation:- Gurken Effects

Zygotic Patterning Genes

- decapentaplaegic (dpp), zerknüllt
 (zen), tolloid are dorsal patterning
 genes
- repressed by Dorsal Intermediate
- dorsal activates *rhomboid* determines neural ectoderm

Segments and Parasegments

- Segments and parasegments organized from A/P compartments
- Cells are found adjacent to each other but Compartments do not mix
- Expression patterns in early embryos are controlled by **parasegments**: so these are the fundamental units of embryonic gene expression

Eight Homeotic Genes Regulate the Identity of Adult and Embryo

labial (lab)

proboscipedia (pb)

Deformed (Dfd)

Sex combs reduced (Scr)

Antennapedia (Antp)

Ultrabithorax (Ubx)

abdominal A (abd-A)

Abdominal B (Abd-B)

Homeotic Mutations

- •Homeotic transformations depends on whether the mutation causes loss of homeotic gene function .
- •Ultrabithorax (Ubx):-acts in the haltere, promote haltere development and repress wing development.
- Loss of function mutations in Ubx transform the haltere into a wing.
- Dominant mutations that cause *Ubx* to gain function, transform that structure again into a haltere.

Terminal Specification

Torso – transmembrane protein

- Torso activated by Torso-like protein
- Present only at ends of egg

(C) TERMINAL: TORSO

Cellular blastoderm

Torso kinases inactivate an inhibitor of *tailless* and *huckebein*

Regional specification

Tailless and Huckebein specify terminus

Distinction between
The anterior and posterior region, by **Bicoid genes**

External phenotype

Bicoid (acron)
Formation