# **Photosynthesis**



# Photosynthesis

- Photo means 'light' and synthesis means 'to make'
- Process in which plants convert carbon dioxide and water into sugars using solar energy

 Occurs in chloroplast





**Photosynthesis:** 

 $6 \operatorname{CO}_2 + 6 \operatorname{H}_2 \operatorname{O} \longrightarrow \operatorname{C}_6 \operatorname{H}_{12} \operatorname{O}_6 + 6 \operatorname{O}_2$ 

carbon dioxide + water = sugar + oxygen



photosynthetic products
often stored as starch
•Starch = glucose polymer

## **Physiological structure**







**Biology of Plants, Seventh Edition** © 2005 W. H. Freeman and Company





#### Chlorophyll

### •Absorbs red & blue light

### •Reflects green light

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

### **Electromagnetic Spectrum**



Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.



Resonance energy transfer to the Reaction center

Figure 7-10 Biology of Plants, Seventh Edition © 2005 W.H.Freeman and Company

### +Light-Harvesting Complexes

### Reaction centers

- Where photosynthesis takes place
- Contain chlorophyll molecules

### Light-harvesting complexes

- Antenna pigments in membrane proteins
- Proteins in complex act as scaffold for pigment molecules
- Many different pigment types absorb different
   λ of light
- Exciton transfer (>) brings energy to chlorophyll at reaction center





The photosynthetic pigments absorb much of the spectrum



Photoreceptor that absorbs higher energy (shorter)  $\lambda$ , transfers energy to one that absorbs lower energy (longer)  $\lambda$ 



Figure 7-12 Biology of Plants, Seventh Edition © 2005 W. H. Freeman and Company





### Cyclic and Non-cyclic Photophosphorylation













| Photosystem I                                                             | Photosystem II                                                                     |
|---------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Photolysis of water is not occurred.                                      | It is related with photolysis of water.                                            |
| Reaction center is P700.                                                  | Its reaction center is P680.                                                       |
| It is rich in chlorophyll A then Chlorophyll B                            | It is rich in chlorophyll B then Chlorophyll A                                     |
| Molecular oxygen is not evolved.                                          | Photosystem II, as a result of photolysis of water<br>molecular oxygen is evolved. |
| Receive electrons from photosystem II.                                    | Receive electrons from photolytic dissociation of<br>water.                        |
| Pigments absorbs longer (>680nm) wavelengths of<br>light                  | Pigments absorbs shorter (<680nm) wavelengths of<br>light                          |
| In this reaction, NADPH is formed.                                        | While in this reaction, NADPH is not formed.                                       |
| It can participate in both cyclic and non-cyclic<br>photophosphorylation. | Just participates in non-cyclic photophosphorylation.                              |
| The core complex is composed by a smaller number of protein.              | The core complex is composed multi-subunit of about 25-30 sub-units.               |
| Lies on the outer surface of thylakoid membrane                           | Lies on the inner surface of the thylakoids.                                       |
| PS I has iron sulphur type reaction center.                               | PS II is a Quinone type reaction center                                            |
| Major function is NADPH synthesis.                                        | Its main function is hydrolysis of water and ATP<br>synthesis.                     |

Key products of Light reaction

Fig. 10.20

Carbon Fixation



## Types of photosynthesis

### • C3

- The majority of plants
- C4
  - CO<sub>2</sub> temporarily stored as 4-C organic acids resulting in more efficient C exchange rate
  - Advantage in high light, high temperature, low CO<sub>2</sub>, low nitrogen
  - Many grasses and crops (e.g., corn, sorghum, millet, sugar cane)
- CAM
  - Stomata open during night
  - Advantage in arid climates
  - Many succulents (e.g., cacti, euphorbs, bromeliades, agaves)