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Genetic recombination:

1.Homologous Recombination
2. Site-Specific Recombination

3. DNA Transposition



Homologous Recombination at the Molecular
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Recombination repair DNA breaks by retrieving sequence
Information from undamaged DNA

Double-Strand Breaks are Efficiently Repaired
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HOMOLOGOUS RECOMBINATION MODELS

Gene Gene
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(@) A double-strand break in one of two
homologs is converted to a double-

Strands with 3'ends are degraded
less than those with 5'ends,
2 producing 3'single-strand extensions.

(@ An exposed 3'end pairs with its
complement in the intact homolog.
The other strand of the duplex
is displaced.
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@ The invading 3'end is extended by
DNA polymerase plus branch migration,
eventually generating a DNA molecule
with two crossovers called Holliday
intermediates.

strand gap by the action of exonucleases.

D S

(@) Further DNA replication replaces the
DNA missing from the site of the
original double-strand break.

@ Cleavage of the Holliday intermediates
by specialized nucleases generates
either of the two recombination products.
In product set 2, the DNA on either side of
the region undergoing repair is recombined.

Product set 1 Product set 2



Strand invasion (strand exchange) is a key step In
homologous recombination
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Resolving Holliday junctions is a

key step (final step) to finishing
genetic exchange
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The double-strand break-repair model describes many
recombination events
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HOMOLOGOUS RECOMBINATION PROTEIN
MACHINARIES

TABLE 10-T1 Prokaryotic and Eukaryotic Factors That Catalyze Recombination Steps

Recombination Step

E. coli Protein Catalyst

Eukaryotic Protein
Catalyst

Pairing homologous DNAs
and strand invasion

Introduction of DSB

Processing DNA breaks to
generate single strands
for invasion

Assembly of strand-
exchange proteins

Holliday junction
recognition and branch
migration

Resolution of Holliday
junctions

RecA protein

None

RecBCD helicase/nuclease

RecBCD and RecFOR

RuvAB complex

RuvC

Rad51

Dcm1 (in meiosis)

Spo11 (in meiosis)

HO (for mating-type
switching)

MRX protein (also

called Rad50/58/60
nuclease)

Rad52 and Rad59

Unknown

Perhaps Rad51c-
XRCC3 complex
and others
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The RecBCD helicase/nuclease processes broken DNA
molecules for recombination
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Structure of RecBCD
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Chi sites control RecBCD (GCTGGTGG)
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RecA protein assembles on single-stranded DNA and
promotes strand invasion
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Three views of the RecA filament
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Newly based-paired partners are established within RecA
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RecA homologs are present in all organism
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Branch migration can either enlarge heteroduplex regions or
release newly synthesized DNA as a single strand
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Structure of RuvA and model of RuvAB bound to Holliday junction
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MOVES IN

MOVES
ouT

MOVES IN

Figure 5-63. Molecular Biology of the Cell, 4th Edition.

Enzyme-catalyzed double branch migration at a Holliday junction.

In E. coli, a tetramer of the RuvA protein (green) and two hexamers of the RuvB
protein (pale gray) bind to the open form of the junction. The RuvB protein uses the
energy of ATP hydrolysis to move the crossover point rapidly along the paired DNA
helices, extending the heteroduplex region as shown. There is evidence that similar
proteins perform this function in vertebrate cells. (Image courtesy of P. Artymiuk;
modified from S.C. West, Cell 94:699—-701, 1998.)



RuvC cleaves specific strands at the Holliday junction to
finish recombination
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Structure of RuvC and model of RuvC dimer bound to Holliday
junction




How to resolve a recombination intermediate with two Holliday

junctions
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HOMOLOGOUS

RECOMBINATION IN “ )
EUKARYOTES "oy,
Homologous recombination has l

additional functions in eukaryotes K)‘
It is required to pair homologous ; BI“’ f

chromosomes in preparation for the
first nuclear division and for
segregation during meiosis
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Meiotic recombination also frequently gives rise to crossing over
between genes on the two homologous parental chromosomes
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Programmed generation of double-stranded DNA breaks
occurs during meiosis
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Many proteins function together to promote meiotic
recombination (Rad51, DMC1, Rad51 paralogs, Rad52,
Rad54)

Dmci




Site-Specific recombination & Transposition
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Conservative site-specific recombination
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Structures involved in CSSR
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Three types of CSSR
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Covalent-intermediate mechanism used by the serine and tyrosine recombinases.
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Recombination by a
tyrosine recombinase
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Mechanism of Site specific recombination by
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Recombination sites involved in A integration and excision showing
the important sequence elements.

Model for IHF bending DNA to bring DNA-binding
sites together.




Conservative site-specific recombination
was discovered in bacteriophage lambda

The insertion of a circular bacteriophage
lambda DNA chromosome into the
bacterial chromosome.
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,—J: heteroduplex joints:L|

bacteriophage DNA integrated into
bacterial chromosome

Figure 5-80. Molecular Biology of the Cell, 4th Edition.



The life cycle of bacteriophage
lambda.

The double-stranded DNA lambda
genome contains 50,000 nucleotide
pairs and encodes 50-60 different
proteins. When the lambda DNA
enters the cell, the ends join to
form a circular DNA molecule.
This bacteriophage can multiply in
E. coli by a lytic pathway, which
destroys the cell, or it can enter a
latent prophage state. Damage to a
cell carrying a lambda prophage
induces the prophage to exit from
the host chromosome and shift to
lytic growth (green arrows). Both
the entrance of the lambda DNA to,
and its exit from, the bacterial
chromosome are accomplished by
a conservative site-specific
recombination event, catalyzed by
the lambda integrase enzyme (see
Figure 5-80).
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DNA inversion by the Hin recombinase of Salmonella
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TABLE 12-1 Recombinases by Family and by Function

Recombinase Function

Serine family

Salmonella Hin invertase Inverts a chromosomal region to flip a gene promoter by
recognizing hix sites. Allows expression of two distinct
surface antigens.

Transposon Tn3 and Promotes a DMNA deletion reaction to resolve the DNA fusion

+6 resolvases event that results from replicative tmnspaosition.

Recombination sites are called res sites.
Tyrosine family

Bacteriophage A Promotes DMNA integration and exdsion of the A genome into,
integrase and out of, a spedfic sequence on the E coli chromosome.
Recombination sites are called att sites.
Phage P1 Cre Promotes drcularization of the phage DMNA during infection
by recognizing sites (called lox sites) on the phage DMNA.
Escherichia coli XerC Promotes several DNA deletion reactions that convert dimeric
and XerD circular DMA molecules into monomers. Recognizes both
plasmid-borne sites (cer) and chromosomal sites (dif).
Yeast FLP Inverts a region of the yeast 2 p plasmid to allow for a DNA

amplification reaction called rolling cirdle replication.
Recombination sites are called fri sites.




Transposition

Some genetic elements move to new chromosomal
locations by transposition

transposon
|

genomic DNA (j ) 7)_[>|) )
old site J new site

movement without duplication

/’”L\ 1

movement with duplication

0 § < > I < > )< -

)

excised from old site copies of element
and inserted in new site at old and new sites
rson Education, Inc., publishing as Pear.
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Genetic organization of the three classes of transposable elements.
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Table 5-3 Three Major Classes of Transposable Elements

CLASS DESCRIPTION AND SPECIALIZED ENZYMES MODE OF MOVEMENT EXAMPLES
STRUCTURE REQUIRED FOR MOVEMENT

- transposase moves as DNA, either by P element (Drosophila)

short inverted repeats at cut-and-paste or Ac-Ds (maize)
each end replicative pathways Tn3 and Tn10 (E. coli)
Tam3 (snapdragon)

_‘ reverse transcriptase and moves via an RNA Copia (Drosophila)

directly repeated long terminal integrase intermediate produced Ty1 (yeast)
repeats (LTRs) at each end by a promoter in the LTR THE1 (human)
Bs1 (maize)

- reverse transcriptase and moves via an RNA F element (Drosophila)
Poly A at 3’ end of RNA endonuclease intermediate that is L1 (human)
transcript; 5’ end is often often produced Cin4 (maize)
truncated from a neighboring
promoter

These elements range in length from 1000 to about 12,000 nucleotide pairs. Each family contains many members, only a few of which
are listed here. In addition to transposable elements, some viruses can move in and out of host cell chromosomes by transpositional
mechanisms. These viruses are related to the first two classes of transposons.

Table 5-3 Molecular Biology of the Cell 5/e (© Garland Science 2008)



The cut-and-paste mechanism of transposition

(DNA transposons)
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Replicative transposition (DNA transposons)
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Chemical step of DNA strand transfer
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Similarities of catalytic domains of transposases and integrases.
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Three mechanisms for cleaving the nontransferred strand.
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Virus-like retrotransposons
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Some virus use a transposition mechanism to move themselves

Into host cell chromosomes
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Figure 5-71 Molecular Biology of the Cell 5/e (© Garland Science 2008)

=

TRANSCRIPTION '

many e —

R

TRANSLATION '

. . 703
capsid protein \ |1\ ——

ASSEMBLY OF MANY
+ NEW VIRUS PARTICLES,
| A EACH CONTAINING
envelope protein ¢ 4%~ ——1 A REVERSE TRANSCRIPTASE,
+ INTO PROTEIN COATS

reverse transcriptase :.’. S
o



Poly-A retrotransposon
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V(D)J Recombination




Overview of the process
of V(D)J recombination.
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Recombination signal sequences recognized in V(D)J recombination.

a 7-mer 12-bp spacer  9-mer
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The V(D)J recombination pathway:

cleavages occur by a mechanism
similar to transposon excision.
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TABLE 11-2 Major Types of Transposable Elements

Type

Structural Features

Mechanism of Movement

Examples

DNA-mediated transposition

Bacterial replicative
transposons

Bacterial cut-and-paste
transposons

Eukaryotic transposons

RNA-mediated transposition

Virus-like retrotransposons

Poly-A retrotransposons

Terminal inverted repeats that
flank antibiotic-resistance
and transposase genes

Terminal inverted repeats
that flank antibiotic-
resistance and transposase
genes

Inverted repeats that flank
coding region with introns

~250- to 600-bp direct
terminal repeats (LTRs)
flanking genes for reverse
transcriptase, integrase,
and retrovirus-like Gag
protein

3’ A-T-rich sequence and 5
UTR flank genes encoding
an RNA-binding protein and
reverse transcriptase

Copying of element DNA
accompanying each round of

insertion into a new target site

Excision of DNA from
old target site and
insertion into
new site

Excision of DNA from old
target site and insertion
into new site

Transcription into RNA from
promoter in left LTR by RNA
polymerase Il followed by
reverse transcription and
insertion at target site

Transcription into RNA from
internal promoter; target-
primed reverse transcription
initiated by endonuclease
cleavage

Tn3, ¥d, phage Mu

Tn5, Tn10, Tn7, 1IS911,
Tn917

P elements (Drosophila),
hAT family elements,
TcT1/Mariner elements

Ty elements (yeast),
Copia elements
(Drosophila)

F and G elements
(Drosophila), LINE and
SINE elements
(mammals), Alu
sequences (humans)
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