BIOLOGICAL BUFFER SYSTEMS

Gunanidhi Sahoo Department of Zoology Utkal University, Bhubaneswar, Odisha, PIN – 751 004

- Almost every biological process is pH-dependent; a small change in pH produces a large change in the rate of the process.
- **True both for reactions occurring with or without H**⁺ ions.
- The enzymes and many of their substrates, contain ionizable groups with characteristic pKa values.
- The protonated amino and carboxyl groups of amino acids and the phosphate groups of nucleotides, for example, function as weak acids; their ionic state is determined by the pH of the surrounding medium.
- Cells/ organisms maintain a specific and constant cytosolic pH, usually near pH 7, keeping biomolecules in their optimal ionic state.
- **❖** In multicellular organisms, the pH of extracellular fluids is also tightly regulated.
- Constancy of pH is achieved primarily by biological buffers.

Ionization/Dissociation of Water, Weak Acids, and Weak Bases

- Pure water ionizes slightly, forming equal numbers of hydrogen ions (H₃O⁺) and OH⁻ ion.
- The extent of ionization is described by an **equilibrium constant**, The **ion product of water** (**Kw**) is derived from K_{eq} . $K_{eq} = \frac{[H^+][OH^-]}{[H_9O]}$
- Weak acids partially ionize to release a H⁺, and lowers the pH of the aqueous solution. Weak bases accept a H⁺ and increases the pH.
- The extent of these processes is characteristic of each particular weak acid or base and is expressed as an acid dissociation constant:

$$K_{\text{eq}} = \frac{[H^+][A^-]}{[HA]} = K_{\text{a}}.$$

• The **pKa** expresses, on a logarithmic scale, the relative strength of a weak acid or base:

$$pK_{a} = \log \frac{1}{K_{a}} = -\log K_{a}.$$

• The stronger the acid, the smaller its pKa; the stronger the base, the larger its pKa. The pKa can be determined experimentally; it is the pH at the midpoint of the titration curve for the acid or base.

The Henderson-Hasselbalch Equation

Relates to the dissociation of weak acids in equilibrium.

HA
$$\leftrightarrow$$
 [H⁺] + [A⁻]

Dissociation constant (K_a) = [H⁺] + [A⁻]

[HA]

[H⁺] = K_a x [HA]

[A⁻]

Taking log on both the sides, log [H⁺] = log K_a + log [HA]/[A⁻]

Changing signs on both the sides, -log [H⁺] = -log K_a - log [HA]/[A⁻]

pH = $pk_a + log [A^-]/[HA]$ or, pH = $pk_a + log [Proton acceptor]$ (HH Equation)

[Proton donor]

This equation fits to the titration curve of all weak acids.

Titration curves reveal the Pka of weak acids

- Titration determines the amount of an acid in a given solution. A measured volume of the acid is titrated with a solution of a strong base, usually NaOH, of known concentration.
- A **titration curve** is the plot of the pH of the analyte solution vs. the volume of the titrant added as the titration progresses.
- A titration curve can be used to determine:
 - The equivalence point of an acid-base reaction (the point at which the amounts of acid and of base are just sufficient to cause complete neutralization).
 - The pH of the solution at equivalence point is dependent on the strength of the acid and strength of the base used in the titration.
- -- For strong acid-strong base titration, pH = 7 at equivalence point
- -- For weak acid-strong base titration, pH > 7 at equivalence point -- For strong acid-weak base titration, pH < 7 at equivalence point

Buffer

 Mixtures of weak acids and their salts of strong bases OR Mixtures of strong acids and their salts of weak bases.

Example: mixture of acetic acid and sodium acetate. $CH_3COOH + CH_3COONa \longrightarrow Na^+ + H^+ + 2CH_3COO^-$

Resists change in pH on the addition of acid (H⁺) or base (OH⁻). Weak acid: H⁺ donor, Weak base: H⁺ acceptor.

Addition of alkali (NaOH) or acid (HCl): Salt is formed, but no free H+ or OH- will be available.

$$CH_3COOH + CH_3COONa + NaOH \implies 2CH_3COONa + H_2O$$

$$CH_3COOH + CH_3COONa + HCI$$
 NaCl + 2CH₃COOH

- **Two factors determine effectiveness/capacity of buffers:**
 - 1. Molar conc. of buffer components: Directly proportional.
 - 2. Relative conc. of the conjugate base and the weak acid.

Ideal buffer: Equal concentrations of acidic and basic components.

Biological Buffer systems

- Buffer systems in the human body are extremely efficient.
- Different systems work at different rates.
- Takes only seconds for the chemical buffers in the blood to make adjustments to pH. The respiratory tract can adjust the blood pH upward in minutes by exhaling CO₂ from the body. The renal system can also adjust blood pH through the excretion of H⁺ and the conservation of bicarbonate, but this process takes hours to days to have an effect.

Principal buffers of ECF: Bicarbonate buffer, Protein buffer

ICF: Phosphate buffer, Protein buffer

RBC: Hemoglobin buffer

1. The Bicarbonate buffer system

- Principal buffer in blood plasma.
- Consists of H₂CO₃ (proton donor) and HCO₃⁻ (proton acceptor).
- Neutralizes stronger dietary acids and metabolic acids (HA) by converting them to weak bases (A⁻) and increase in H₂CO₃.

```
Strong base (B) \longrightarrow Weak acids (BH+) with rise in HCO_3^-.

HA + HCO_3^- \longleftrightarrow A^- + H_2CO_3 Formation of H_2CO_3 depends on dissolved CO_2 conc.

B + H_2CO_3 \longleftrightarrow BH+ + HCO_3^-. Which in turn depends on gaseous CO_2.
```

[HCO₃-]/[H₂CO₃] of 20:1 is required to maintain pH of plasma at 7.4.

- Neutralization of any acid or base and subsequent change in buffer ratio or blood pH is neutralized by respiratory elimination of H_2CO_3 as CO_2 or urinary elimination of HCO_3^- .
- As cells contain much lower amounts of HCO₃-, imp of this buffer in cells is negligible.

Acidosis

Accumulation of acids or loss of alkali \longrightarrow Fall of $[HCO_3^-]/[H_2CO_3]$ below 20. Ratio in favor of H_2CO_3 .

Two types:

- 1. Metabolic acidosis: Conc. of plasma HCO₃. decreased due to excessive loss of bases in renal failure, diabetic ketosis and severe diarrhea.

Alkalosis

Accumulation of alkali or loss of acids ———— Increase in ratio ———— Rise in pH.

- 1. Metabolic alakalois: High intake of alkaline substances, severe vomiting, indiscriminate use of antacids, etc.
- 2. Respiratory alakalosis: Excess removal of CO₂ from blood due to hyperventilation

 Decrease in Hyperpartment of Zoology, Utkal University

2. The Phosphate buffer system

- Consists of H₂PO₄⁻ (H⁺ donor) and HPO₄⁻² (H⁺ acceptor).
 - $H_2PO_4^-$ (Dihydrogen phosphate) \leftrightarrow $H^+ + HPO_4^{-2}$
- Acts in cytoplasm of all cells. More effective in pH range of 5.8 to 7.8.
- pH of ICF = 6.0 6.9, close to its pKa (6.86).
- Plasma HPO_4^{-2} : $H_2PO_4^{-1}$ is 4.0. Hence, pH = Pka + log $[HPO_4^{-2}]$, pH = 6.86 + log4 = 7.4 $[H_2PO_4^{-1}]$

If HPO₄-2: H₂PO₄- tends to be changed by more H₂PO₄-, renal elimination of H₂PO₄- occurs and pH remains unchanged.

- Works exactly like acetate buffer system except pH range.
- Conc. of phosphate buffer very low in plasma, hence less effective.

3. The Protein buffer system

• Very imp in plasma and ICF, but conc. low in CSF, lymph and intestinal fluids.

• Proteins exist as anions serving as conjugate bases (Pr⁻) at blood pH 7.4 and form conjugate acids (HPr) accepting H⁺.

Have the capacity to buffer some H₂CO₃ in blood.

$$H_2CO_3 + Pr^- \longrightarrow HCO_3^- + HPR$$

4. The Hemoglobin buffer system

- Buffers CO₂ inside RBC, capacity depends on oxygenation/deoxygenation of Hb.
- Inside RBC, $CO_2 + H_2O$ Carbonic anhydrase H_2CO_3 .

$$HbO_2^-$$
 (Oxyhb) \longleftrightarrow $Hb^- + O_2$
 $Hb^- + H_2CO_3$ \longleftrightarrow $HHb + HCO_3^-$

- Some HCO_3^- diffuse out into plasma and maintain the balance between ICF and plasma HCO_3^- . This causes influx of some Cl^- into RBC (Chloride shift).
- \clubsuit HHbO₂, produced in lungs by oxygenation of HHB, instantly ionizes to H⁺ and HbO₂⁻.
- Φ H⁺ buffered by HCO_3^- in RBC forming H_2CO_3 which is dissociated into H_2O and CO_2 . CO_2 diffuses out of RBC and escapes into alveolar air.
- Some HCO_3^- return from plasma to RBC in exchange of Cl^- and changed to CO_2 .

$$HHb + O_2 \longleftrightarrow HbO_2 \longleftrightarrow HbO_2^- + H^+$$

$$HCO_3^- + H^+ \longleftrightarrow H_2CO_3 \longleftrightarrow H_2O + CO_2$$

5. The Amino acid buffer system

Contains both acidic (COOH) and basic (-NH₂) groups, H⁺ can pass between this two groups.

• Zwitterion form: Addition or removal of H⁺ to or from zwitterion produces either cation

or anion.

• Addition of: OH⁻ to a solution of aas, they take up H⁺ to form H₂O + anion.

H⁺, they are taken up by zwitterions to produce cationic form.

NaOH
$$\longrightarrow$$
 H₃N $-$ CH₂ $-$ COONa (salt)

HCl
$$\longrightarrow$$
 ClH - H₃N - CH₂ - COOH (amino acid hydrochloride)

Thus, an aa solution is not neutral, but acidic or basic depending on the form in which it presents in greater concn.