Chemical shift

- Contact shift
- Pseudo-contact shift

Shift reagents

Introduction to NMR of biomolecules

Paramagnetic relaxation

Sept. 2020, SEM III

- The magnetic field experienced by a nmr active nuclei is being influenced by the presence of surrounding electron cloud-termed as chemical shift
- Contact shift: Refers to influence of electron cloud present in immediate neighbour
- Pseudo contact shift: Refers to presence of electron cloud in periphery/surrounding

Relevance of the subject

- Introduction to NMR of proteins
- Macromolecules
- NMR in 2-and 3-Dimension

Typical exampleStructure

□ Metalloenzyme

Haemoglobin

Vitamin B₁₂ Cyanocobalmine

R = 5'-deoxyadenosyl, CH₃, OH, CN

Enzymes

NMR Spectroscopy

What you get . . .

depends on where you look

R = 5'-deoxyadenosyl, CH₃, OH, CN

(2,0,0)	(3,0,0)	Hydrogen Wave Function Probability density plots, $\psi_{nlm}(r, \vartheta, \varphi) = \sqrt{\left(\frac{2}{na_{y}}\right)^{2} \frac{(n-l-1)!}{2n[(n+l)!]}} e^{-\mu/2} \rho^{l} L_{n-l-1}^{2l+1}(\rho) \cdot Y_{lm}(\vartheta, \varphi)$		
(2,1,0)	3,1,0)	(3,1,1)		÷
(2,1,1)	(3,2,0)	(3,2,1)	(3,2,2)	
(4,0,0)	3	(4,1,1)	(4,2,0)	(4,2,1)
(4,2,2)	(4,3,0)	(4,3,1)	(4,3,2)	(4,3,3)

Pseudo contact

+

In H NMR, proton splits into 2m_l+1 no. of lines in presence of external magnetic field. For a methyl group, it will split into----no. of lines

Both H and C has I value of ½, but in 1 T field ____will resonate at higher frequency and why?

Draw the nuclear spin energy levels of ¹³C and ¹⁴N in presence of external magnetic field and show possible transitions .

Both sigma and pi electrons generate secondary anisotropic fields (T/F)

Both aromatic and aliphatic alcohols show variable chemical shift values (T/F)

Free induction decay corresponds to both transverse and longitudinal decay of magnetization (T/F)