Immunoglobulins

Structure and Function

Dr. Bandana Kullu
Assistant Professor
P.G. Dept. of Botany
Utkal University

Introduction

- Immunoglobulins (Igs) are glycoprotein molecules also called antibodies(Abs)
- Antigen binding proteins present on the B-cell membrane and secreted by plasma cells
- Membrane-bound antibody confers antigenic specificity on B cells
- Secreted antibodies circulate in the blood, where they serve as the effectors of humoral immunity, complement system

Discovery

Structure of Ig

- 2x Heavy chain (light blue)
- 2x light chain (dark blue)
- Variable regions → antigen binding
- Constant regions

Fragments of Ig

Folding of heavy chain and light chain

Functions of Immunoglobulin

- Effectors of humoral immunity
- Opsonization
- Activation of Complement system
- Kill cells through ADCC
- Transcytosis and passive immunity

Ig Heavy Chains and Light Chains

Heavy chain types:

- IgG gamma (γ) heavy chains
- IgM mu (μ) heavy chains
- IgA alpha (α) heavy chains
- IgD delta (δ) heavy chains
- IgE epsilon (ε) heavy chains

Light chain types:

- kappa (к)
- Iambda (λ)

Human Antibody Class

Class	IgG	IgM	IgA	lgD	IgE
Heavy Chain	γ - Gamma	μ - Mu	lpha – Alpha	δ- Delta	arepsilon - Epsilon
Light Chain	—————————————————————————————————————				
No. of C domain in Heavy chain	3	4	3	3	4
Form	Monomer	Pentamer	Mono/di/tri	Monomer	Monomer
Valency for Ag Binding	2	5	2	2	2
Conc. range in normal serum	8-16mg/ml	.5-2mg/ml	1.4-4mg/ml	0-0.4mg/ml	17-450ng/ml
% of total Ig	80	6	13	1	0.002
Distribution	Abundant in internal body fluid	In Serum	Seromucus secretion milk, saliva, tear etc.	Present on lymphocyte of new born	Attach to mast cell

IgG

(a) IgG

Hinge region

 Most versatile Ig and can carry out all functions of Ig molecules.

- Major Ig in
- Only Ig that crosses the placenta.
- Fixes complement although not all subclasses do this well.
- It binds to cells and is a good poisoning substance that enhances phagocytosis

Sub Class of Ig

IgM

- First Ig to be made by fetus in most species and new B cells when stimulated by Ags.
- 3rd most abundant Ig in serum.
- Good complement fixing Ig leading to lyses of microorganisms
- Good agglutinating Ig, hence clumping microorganisms for eventual elimination from the body.
- Able to bind some cells via Fc receptors.
- B cells have surface IgMs, which exists as monomers and lacks J chain
- But have an extra 20 amino acid at the C-terminal that anchors it to the cell membrane.

lg M

Ig A

- > Serum IgA is monomeric, but
- > IgA found in secretions is a dimer having a J chain.
- Secretory IgA also contains a protein called secretory piece or T- piece
- ➤T- piece, made in epithelial cells and added to the IgA as it passes into secretions
- Helping the IgA to move across mucosa without degradation in secretions
- > It is the second most abundant Ig in serum
- ➤ Major class of Ig in secretions- tears, saliva, colostrums, mucus and is important in mucosal immunity.
- > It does not normally fix complement.

IgA

IgD

- ➤It is found in low levels in serum and its role in serum is uncertain
- ➤ It is found primarily on B cells surface and serves as a receptor for Ag. It does not fix complement.

Ig E

- g, C₂3
 eptors on
- ➤ It is the least common serum Ig, but it binds very tightly to Fc receptors on basophils and mast
- > Cells even before interacting with Ags.
- ➤ It is involved in allergic reactions because it binds to basophils and mast cells.
- ➤ It plays a role in parasitic helminthic diseases. Serum levels rise in these diseases.

Allergic reaction

Isotypes, allotypes, & idiotypes

