1st Semester Examination – 2021 Spectroscopy-I, CH-406, Full Marks: 50, Time: 2 h (2x10) Group A 1. How many planes of symmetry are present in $F_2C=0$ and $[HCO_2^-]$. 2. What point group is obtained by adding a σ_h plane to C_{2v} point group. 3. Write the formula and explain the transition moment integral. 4. What are the conditions for light absorption by a molecule. 5. What is the difference between R-S coupling and spin-orbit coupling. 6. Charge-transfer spectra, Explain briefly. 7. What is the ground term for the configuration of $3d^3$ of Cr^{3+} . 8. Indicate the relationship between I_a, I_b and I_c of HCN and CH₃I molecules. 9. Mention the complete rotational selection rules. 10. Draw the Photoelectron spectrum of H-atom Group B 1. (a) Prove that conjugate matrices have identical character taking an example. (3) (b) Note down the symmetry elements and identify the point group of (4) ((i) trans-PCl₃F₂ and (ii) Ni(CN) $_4$ ²-. (c) Give an account of factors on which the intensity of spectral lines depends. (3) (a) Prove that: (i) $C_4(z) \sigma(xz) = \sigma_d$ (ii) $S_2 = i$. (3) (b) Briefly discuss the properties of conjugate elements. (4) (c) What are the factors affecting the broadness of spectral lines (3) 2. Discuss the atomic spectra of hydrogen. (5) State Franck-Condon principle. How does it explain the electronic spectra in a molecule? 3. What is the term symbols for p^5 and d^1 configuration? (5) Find all possible arrangements of orbital and spin quantum numbers of a p^2 configurations? Deduce the term out of it. 4. Show that $J_{max}=(kT/2hB)^{1/2}-1/2$, where the terms have their usual meanings. (5) Or Describe the influence of nuclear spin on the rotational spectral lines. 5. Discuss the Photoelectron spectrum of H₂O molecule (5) Write notes on ESCA (Electron Spectroscopy of Chemical Analysis)