[3]

[5]

M.Tech(CSE) 1st Semester Examination -2019 Subject: Mathematical Foundations of Computer Science (MFCS)

Time: 3 Hours Marks: 70

Answer all questions. The figure in the right hand margin indicates marks.

Prove that the identity element (if it exists) of any algebraic structure is

Q3 a)

b)

unique.

In any Boolean algebra B, for all a. $b \in B$

Prove that $a \lor (a \land b) = a$ and $a \land (a \lor b) = a$.

c) Prove that the necessary and sufficient condition for a non empty sub-set H of a group (G,*) to be a sub group is $a \in H, b \in H \Rightarrow a * b^{-1} \in H$, where b^{-1} is the inverse of b in G.

<u>OR</u>

- a) Show that the set {1, 2, 3, 4, 5} is not a group under addition modulo 6. [3]
- b) If R is the set of real numbers and * is the operation defined by a*b=a+ [5] b+3ab, where $a,b\in R$, show that [R,*] is a commutative monoid. Which elements have inverses and what are they?

[6]

[5]

- c) Let (L, \leq) be a lattice. Then for $a, b \in L$ show that
 - i) $a \lor b = b \text{ iff } a \leq b$
 - ii) $a \wedge b = a \text{ iff } a \leq b$
 - iii) $a \wedge b = a \ iff \ a \vee b = b$
- **Q4** a) For a set of 10 multiple choice questions, where each question has four [3] options, find the number of ways of answering all questions.
 - b) Prove by Pigeonhole principle that if seven integers from 1 to 12 are chosen, then two of them will add up to 13.
 - c) A company purchased 100,000 transistors: 50, 000 from supplier A, 30, 000 from supplier B, and 20, 000 from supplier C. It is known that 2 percent from supplier A's transistors are defective, 3 percent of supplier B's transistors are defective, and 5 percent of supplier C's transistors are defective. Given that a transistor selected at random is defective, what is the probability that it is from supplier B?

OR

- a) The probabilities of A, B C solving a problem are 1/3, 2/7, 3/8 respectively. If all they try to solve the problem simultaneously, what is the probability that the problem will be solved?
- b) A continuous random variable has the following density function: [5]

$$f(x) = \begin{cases} \frac{1}{2} - ax & 0 \le x \le 4\\ 0 & otherwise \end{cases}$$

Find the value of a and then compute P(1 < x < 2).

- c) A man has 7 relatives, 4 of them are ladies and 3 gentlemen, his wife has 7 relatives and 3 of them are ladies and 4 gentlemen. In how many ways can they invite a dinner party of 3 ladies and 3 gentlemen so that there are 3 of man's relatives and 3 of wife's relatives?
- **Q5** a) Define isomorphism. Determine whether the following pair of graphs are [3] isomorphic:

- b) How many vertices do the following graphs have if they contain?
 - i) 16 edges and all vertices of degree 2.
 - ii) 21 edges, 3 vertices of degree 4 and others each of degree 3.
- c) Apply the Havel-Hakimi result to determine if the following degree sequences [6] are graphic. If so draw such graph.
 - i) (1, 1, 1, 2, 2, 2, 3, 3, 4, 7)
 - ii) (1, 3, 3, 4, 5, 5, 5, 5, 5)

- a) Prove that if a graph G has no loops or multiple edges, then number of vertices of odd degree is an even number.
- b) Determine whether the following graph is Hamiltonian. Justify your answer. [5]

c) Write Fleury's algorithm and then using the algorithm find Euler's circuit of the [6] following graph:

