2021

Time: 2 1 (Ar 1.		Full Mark rall questions and the figures in the right hand margin indicates marks)	: 70
1.	a)	Design DFA over {1, 0} that accept set of all strings that, when interpreted <i>in reverse</i> as a binary integer divisible by 5. For example are 0, 10011, 1001100, 0101.	and [7]
	b)	Construct a NFA that accept the following languages over $\{0,1\}^*$: The set of a strings such that containing either 101 or 110 as substring. OR	
	c)	Construct a NFA that accept all string that 4 th symbol from RHS is a over alphabets {a, b}. Give its transition table and the extended transition function the input string "abbabab".	for [8]
2.	d)	Prove that "A language L is accepted by some DFA if and only if L is accepted some NFA".	
2.	a)	 Write down the regular expression over {a, b} for i. The set of all string that contain exactly three 1's. ii. Length of string at least 3 iii. Sting should not contain two a's come together. iv. The set of all string such that number of 0's is odd. 	[8]
	b)	Prove that the following is not a regular languages. $L = \{0^n n \text{ is power of } 2\}.$	[6]
		OR Construct a minimized DFA for the RE= 101+ o*1(0+11). Show that the class of RLs is closed under the following operations: i. Concatenation ii. Kleene Closure	[8] [6]
3.	a)	Construct a PDA to accept the language L= $\{a^nb^{2n+1} n>=1\}$ by empty stack.	[7]
	b)	Simplify the following grammar by eliminating null productions, unit productions, and useless symbols and then convert to Chomsky normal form. S -> ABC BaB, A -> aA BaC aaa, B -> bBb a D, C -> CA AC, D -> ε	[7]
		$\begin{array}{c} \textbf{OR} \\ \textbf{Design a NPDA over alphabets } \{a,b\} \text{ that will accept the language} \\ \textbf{L} = \{\ a^i\ b^j\ c^k\ \ i=j\ \text{or}\ k <= j <= 2k\ \}. \\ \textbf{Show that the class of RLs is closed under the following operations:}} \\ \textbf{i. Kleene Closure} \\ \textbf{ii. Concatenation} \end{array}$	[7] [7]

4.		
a)	Design a Turing Machine to compute max(n ₁ , n ₂), where n ₁ and n ₂ are unary	
	number.	[7]
b)	Design a TM over alphabets {a, b} that will accept the language	
	$L = \{ wcw \mid w \in (a, b)^+ \}.$	[7]
	OR	
c)	Design a TM over alphabets {a, b} that will accept the language	
	$L = \{ a^n b^m c^n \mid n, m >= 0 \}.$	[7]
d)	Design a turing machine which reverse the given string "abb".	[7]
5.		
a)	How Queue Machine is equivalent to Turing Machine? Explain with example.	[7]
b)	If L1 and L2 are recursively enumerable languages, prove that the UNION and	
	CONCATENATION of L1 and L2 is also recursively enumerable.	[7]
	OR	
c)	Show that the Acceptance problem for CFLs is decidable.	[7]
d)	Show that the class of Recursive Languages is closed under the following	
	operations:	[7]
	i. Star	
	ii. Complement	
	1	