1st End Semester Examination-2021 Physical Chemistry-I, CH-403, Full Marks: 50, Time: 2 h

Group A

1.	The spatial part of the wave function of the atom in ground state is $1s(1)1$ then write down the spin part.	s(2),	
2. 3.	The operation of the commutator $[x, d/dx]$ on a function $f(x)$ is equal to? Write down the values of the magnetic quantum numbers for p_x , p_y and p_z or if the field is applied in z-direction.	bital	
4.	Draw the first four wave functions of a harmonic oscillator.		
5.	Define Chemical potential.		
6.	What is Activity and Activity Coefficient		
7.	Discuss the Flux -Force relationship with examples		
8.	Calculate number of ways of distributing two indistinguishable particles in t boxes.	hree	
9.	What are the characteristics of fermions?		
10.	Calculate electronic partition function of chlorine atom if it is assumed that en	ergy	
	of first and higher excited states are large.		
Group B			
11.	Show that the most probable distance (r) of finding an electron in H-atom i where the a_0 is Bohr's radius.	s a ₀ , [5]	
	Or		
	Show that $[P_x, L_y] = i(h/2\pi)P_z$		
12.	Simplify $L_z Y_{l,m}(\theta, \phi) =$	[5]	
	Or		
	Show that the first order non degenerate perturbation energy can be expresse $E^{1} = \langle \psi^{0}I\psi^{0} \rangle$, where the terms have their usual meanings.	d by	
13.	Determine the Partial Molar Free energy using Apparent molar property OR	[5]	
	What is Fugacity. Determine the Fugacity using Graphical method		
14.	Differentiate between Reversible and Irreversible processes and discuss thermodynamic criteria of Irreversible processes OR	the [5]	
	Show that:		
effe	$L_{ii} L_{jj} - L_{ij}^2 > 0$, where L_{ii} , L_{jj} are diagonal phenomenological coefficient (d ect) L_{ij} is off diagonal phenomenological coefficient (indirect effect)	irect	
15.	a. Derive translational partition function of a diatomic molecule as $Q_t = (2\pi m kT)^{3/2}/h^3$. (RT/P)	[5]	
	b. Show that $S = R[ln(Q/n)+T(dlnQ/dT)_v+1]$ Or	[5]	

Derive $n_i = g_i/(e^{\alpha + \beta \varepsilon i} + 1)$, and name this relationship [5+1]

Prove $T(dlnQ/dT)_v = 3/2$	[4]
END	