I-S-(M.Sc.-CBCS-Chem)-403-(P.Ch-I)R&B

2019

Time: As in Programme

Full Marks: 50

Answer all questions. The figures in the right-hand margin indicate marks.

 (a) Discuss the probability density and radial distribution function for 1s state of hydrogen atom. The wavefunction of hydrogen 1s state is

 $\psi_{1s} = \frac{1}{\left(\pi \, a_0^3\right)^{\frac{1}{2}}} \quad e^{-\pi/a_0}$

- (b) Derive ground state energy of helium atom by first order perturbatian theory.
- (c) Prove $[L^2, L_x] = [L^2, L_y] = 0$ 5

OR

BBS_59_(4)

(Turn Over)

(a)	Set up secular determinant for cyclobutadiene. Calculate roots, coefficients, E_{π} , delocalisation energy, electron density, charge density and bond order.	12
(b)	A particle of mass m is confined in a one-dimensional box of length a . Calculate the probability of finding the particle in the following region: $0 \le x \le a/2$	5
2. (a)	What is partial molar volume? How is it determined from apparent molar volume?	2+5
(b)	Prove for a binary system ΔG_{\min} is minimum when $X_1 = X_2 = \frac{1}{2}$	5
(c)	What are phenomenological equations? OR	5
(a)	Prove $\Delta S = nC_V \ln \frac{T_2}{T_1} + nR \ln \frac{V_2}{V_1}$.6
(b)	Calculate the free energy of mixing when 10 moles of He are mixed with 20 moles Ne at 25°C.	4
(c)	Discuss how chemical potential of a substance varies with temperature and pressure.	3

- (d) Discuss Pauli principle by antisymmetric wave function.
- 3. (a) Derive expression for rotational partition function for linear diatomic molecule as 6

$$Q_r = \frac{8\pi^2 IkT}{\sigma h^2}$$

- (b) Prove $S = K \ln \left(\frac{Q^N}{M!} \right) + RT \left(\frac{\partial \ln Q}{\partial T} \right)_V$ 8
- (c) Calculate the number of ways of distributing distinguishable molecules a, b, c between three energy levels so as to obtain the following occupation number:

$$N_0 = 1$$
, $N_1 = 1$, $N_2 = 1$

OR

- (a) Establish a relationship between partition function and equilibrium constant.
- (b) Prove

$$\eta_i = \frac{g_i}{e^{\alpha + \beta \epsilon_i} - 1}$$

the symbols have their usual meanings.

4

2

5

(4)

(c) Calculate number of ways to distribute two distinguishable objects in three boxes.

3