I-S-(M.SC.Chem-CBCS)-401-(IC-I)R&B

2019

Time: As in Programme
Full Marks: 50

Answer all questions. The figures in the right-hand margin indicate marks.

mui Bur		
1. (a) (b)	Write down the postulates of VSEPR theory and explain the limitations of the theory. Write down the shapes and structure of following species: (i) :CCl ₂ (ii) S ₂ O ₃ ²⁻ (iii) XeF ₆ (iv) SbCl ₆ ³⁻	5+3 2×4
	OR	
(a)	State Wade's rule and classify the following compounds as Closo, Nido, Arachno etc.	4+4
	(i) B ₄ H ₆ (CoCp) ₂ (ii) Fe ₄ C(CO) ₁₂ ²⁻ (iii) Bi ₅ ³⁺ (iv) C ₂ B ₄ H ₆ Ni(PPh ₃) ₂	
(b)	Select the species with which CH ₃ is isolobal	2
	and explain: (i) $Fe(CO)_5^{\oplus}$ (ii) $[Cr(CO)_5]^{\ominus}$ $Cr(CO)_5$ $[Mn(CO)_5]$ (iii) $Re(CO)_5$ $W(CO)_5$	

BBS_57_(4)

(Turn Over)

	(c)	Determine styx number of the following Boranes:	3+3
2.	(a)	(i) B ₆ H ₁₀ (ii) B ₄ H ₁₀ What do you mean by stepwise and overall formation constant? How are they related?	7
	(b)	Explain why —	2×5
		(i) bpy can produce easily the tris chelate while 6,6'-dimethyl-bpy fails to produce, the tris chelate?	
		(ii) BF ₄ and ClO ₄ show only very poor complexing power?	
		(iii) The hard-soft interaction is an important consideration to determine stability constant?	
		(iv) Chelate effect is denied in Agen [⊕]	
		(v) Macrocyclic effect is an extension of the chelate effect	
d		OR	
	(a)	stability of a metal complex in a solvent.	7
	(b)	formation constant can be	10
3.	(a)	Explain why —	2×5
		(i) Cis-[Co(en) ₂ Cl ₂] [⊕] aquates at a faster rate than the trans isomer?	
		(ii) Anation reaction of $Cr(H_2O)_6^{3+}$ and $Cr(H_2O)_5OH^{2+}$ follow Ia and Identification mechanisms with u^- as a nucleophile?	

- (iii) The base hydrolysis of Co(py)₆³⁺ does not follow D-CB mechanism?
- (iv) For the base hydrolysis of cis-[Co(en)₂NH₃Cl]²⁺ the % of cis-product and trans-product are 77.0 and 23.0?
- (v) The E.T rate constant of Co(NH₃)₆³⁺ is smaller than that of Co(phen)₃³⁺ with Cr(H₂O)₆²⁺ as reluctant?
- (b) For the following mechanism determine the rate law:

$$ox + Red \xrightarrow{K_{os}} [ox....Red]$$

$$k_{ET} \rightarrow \text{product}$$

of $K_{os}[\text{Red}] < 1.0$, what is the order of the reaction with respect to [Red] and [ox].

OR

(a) Using Marcus Cross relationship prove that $K_{AB} = (K_{AA} \times K_{BB} \times K_{AB} \times F_{AB})^{1/2}$ $K_{AB} = \text{Cross reaction rate constant}$ $K_{AA} \times K_{BB} = \text{self exchange reaction rate constants}$

 K_{AB} = equilibrium constant

$$F_{AB} = \frac{(Z_{AB})^2}{(Z_{AA} \times Z_{BB})} Z_{ij} = \text{Collision}$$
 frequency

(b) Explain why?

- (i) E.T between Co(NH₃)₅Cl²⁺ and Cr(H₂O)₆²⁺ is much faster than between Co(NH₃)₆³⁺ and Cr(H₂O)₆²⁺?
- (ii) In O.S.E.T, $\pi \pi$ and in

I.S.E.T $\overset{*}{\sigma} - \overset{*}{\sigma}$ E.T is favourable?

(c) Evaluate K_C for the following equilibriums process at 298 k

3

$$Fe(CN)_6^{4-} + Co(dip)_3^{3+} \rightleftharpoons$$

$$Fe(CN)_6^{3-} + Co(dip)_3^{2+}$$

$$E^{o}(R \cdot P) \text{ for } \frac{Fe(CN)_{6}^{3-}}{Fe(CN)_{6}^{4-}} = +0.355V$$

and for
$$\frac{\text{Co}(\text{dip})_3^{3+}}{\text{Co}(\text{dip})_3^{2+}} = +0.370\text{V}$$