III-S-(M.Sc.-Chem)-CBCS-505-(AS)R&B

2019

Time: As in Programme
Full Marks: 50

Answer all questions. The figures in the right-hand margin indicate marks.

- 1. (a) How many normal modes of vibration are expected for the following molecules from symmetry consideration?
 - (i) H₂S
 - (ii) trans N₂F₂
 - (iii) NDH₂
 - (b) How do you identify spurious mode and missing mode of vibration? Explain with suitable example.

OR

BBS_64_(3)

(Turn Over)

	(a)	Prove for water $\Gamma_{\text{vib}} = 2A_1 + B_2$	4
	(b)	Explain the mode of bonding of ambidentate ligands.	2
	(c)	Explain Resonance Raman Spectra (RRS). Why the intensity of RRS is much higher than normal Raman Scattering.	4
2.	(a)	Write the basic principle of ESR. Why ESR is observed in microwave region?	6
	(b)	A NMR spectrophotometer operating at 60 MHz frequency gives proton spectrum at a field of 1.40T. At what field would be ^{11}B spectra observed at 60 MHz (g_N of $^{11}B = 1.792$)?	4
		OR	
7	(a)	How ESR spectra is useful to elucidate the structure of a given complex: (NH ₃) ₅ Co —o—o—Co(NH ₃) ₅	2
	(b)	Calculate g-value of Fe ³⁺ .	2
	(c)	What is the frequency of radiation for resonance of free electron in a magnetic field of 0.3T?	2
	(d)	Suggest a structure of the compound of molecular formula C_9H_{12} showing signals at 7.1, 2.2, 1.5 and 0.9 θ ppm.	4

3.	(a)	Explain the Mossbauer spectra of 119Sn.	2
	(b)	What is Doppler shift, if v-ray frequency of ¹¹⁹ Sn is 5.76 × 10 ¹⁸ Hz and recoil velocity is 64.36 m sec ⁻¹ .	4
	(c)	Why isomeric shift in some cases are positive and in some cases are negative?	2.
	(d)	Why [Fe(CN) ₆] ⁴⁻ shows one peak in Mossbauer spectra where as [Fe(CN) ₅ NO] shows two peaks.	. 2
		OR	
	(a)	Write two applications of Mossbauer spectra.	4
	(b)	What are the characteristics of Mossbauer nuclei?	2
	(c)	Predict the Mossbauer spectra of following molecules and draw their spectra:	4
		(i) FeCl ₃	
		(ii) FeSO ₄ ·7H ₂ O	
		(iii) Fe[Fe ^{III} (CN) ₆]	
		(iv) K ₄ [Fe(CN) ₆]·3H ₂ O	