CHOICE BASED CREDIT SEMESTER SYSTEM

P.G. Syllabus M.Sc. Applied Geology

DEPARTMENT OF GEOLOGY UTKAL UNIVERSITY BHUBANESWAR

UTKAL UNIVERSITY M.Sc. APPLIED GEOLOGY (EXAMINATION) SEMESTER CHOICE BASED CREDIT SYSTEM

Examination Schedule 1st Semester-December/January

2nd Semester-May/June

3rd Semester- December/January

4th Semester-May/June

- 1. Candidates with at least 2nd class honours in Geology are eligible to apply for admission in to the course. The course is of two years duration comprising four Semesters of Theory and practical. Each theory paper carries 100 marks out of which the internal marks will be 20% of the total that is 20 marks. The duration of the theory examination will be 3 hours. Practical papers will be of 100 marks and the duration of examination will be 6 hours.
- 2. The First Semester will start with the beginning of the academic session after the admission into the said course as per the University schedule.
- 3. Normally examination for First and Third Semesters will be completed between December-January and Examinations for Second and Fourth Semesters will be completed between May-June of the academic session. If for any reason(s) Semester Examinations could not be conducted as per schedule, both Semester (Theory and Practical) examinations of the session will be conducted at the end of the academic session of that year.
- 4. The Semester system of Examination will have internal valuation for theory papers. Practical papers will be examined by one internal examiner and one external examiner. If necessary the practical examination may be extended to the next day.
- 5. Seminar presentation in each academic session will carry 15 marks which will be taken into consideration in one Practical examination of the session. The seminar marks shall be given by three teachers of the department selected by The Teacher's Council at the beginning of the Semester. The marks shall be forwarded to the examiners (Internal and External) with the signature of all the three Teachers and counter signature of the Head of the Department at the time of Practical Examination.
- 6. In order to be eligible to appear the University Examination, attendance will be taken into account as per University Rules. The attendance will be calculated every month by the Department and the students are to collect information from the office.
- 7. A candidate, if so desires, will get one chance only to repeat in one or more paper(s) of any Semester with in a period of one year of the said Semester examination.
- 8. In the fourth Semester there will be Elective papers (A/B/C/D) out of which the students may choose any one out of the four Electives.
- 9. The practical paper 4AGLCE4 will carry 100 marks and corresponds to three theory papers. The Paper 4AGLCE5 is a project work (Industrial training / Dissertation work) carrying 100 marks.
- 10. If any student fails to complete the Project Report due to some on avoidable reasons, he/she may have to choose one of the Elective Theories in lieu of Project Report. The Theories are:

- a) Mineral Resource Development
- b) Environmental Science
- 11. In each Semester the students are required to undergo a Field Training programme for a period of 15 days. The students are to deposit a requisite fee towards the field training programme at the time of admission.

Core paper (Compulsory)

<u>Ist Semester</u>

Theory/	Paper No.	Title of the course	Credit	Marks
Practical				
Theory	1AGLC1	Crystallography, Mineralogy and	4	100
		Mineral optics		
Theory	1AGLC2	Mineral deposits	4	100
Theory	1AGLC3	Applied Economic Geology, Mineral	4	100
		economics and Remote Sensing		
Practical	1AGLC4	Practicals corresponding to Theory	6	100
		Paper 1AGLC1		
Practical	1AGLC5	Practicals corresponding to Theory	6	100
		Paper 1AGLC2 and 1AGLC3		
		Total	24	500

2nd Semester

Theory/	Paper No.	Title of the course	Credit	Marks
Practical				
Theory	2AGLC1	Igneous petrology, Sedimentary	4	100
		petrology and Basin analysis		
Theory	2AGLC2	Metamorphic petrology and Applied	4	100
		Geochemistry		
Theory	2AGLC3	Applied hydrogeology and Engineering	4	100
		geology		
Practical	2AGLC4	Practicals corresponding to Theory	6	100
		Paper 2AGLC1, Seminar		
Practical	2AGLC5	Practicals corresponding to Theory	6	100
		Paper 2AGLC2 and 2AGLC3, Field		
		report		
		Total	24	500

3rd Semester

Theory/	Paper No.	Title of the course	Credit	Marks
Practical				
Theory	3AGLC1	Structural geology, Geodynamics and	4	100
		Geomorphology		
Theory	3AGLC2	Paleontology, Applied	4	100
		Micropaleontology & Geological		
		Oceanography		
Theory	3AGLC3	Stratigraphy, Palaeogeography and	4	100

		Quaternary Geology		
Theory	3AGLC4	a) Geostatistics and Computer	2+2	50+50
		application in Geology		
		b) Environmental geology, Medical		
		geology and Disaster management		
Practical	3AGLC5	Practicals corresponding to Theory	6	100
		Papers		
		Total	22	500

4th Semester

Core Elective papers (Special papers)

Theory/	Paper No.	Title of the course	Credit	Marks
Practical				
Theory	4AGLCE1	Elective A/B/C/D	4	100
Theory	4AGLCE2	Elective A/B/C/D	4	100
Theory	4AGLCE3	Elective A/B/C/D	4	100
Practical	4AGLCE4	Practicals corresponding to Theory	6	100
		Paper 4AGLCE1 and 4AGLCE2,		
		Seminar, Field report		
Project	4AGLCE5	Project/Dissertation (external /Internal)	6	100
		Total	24	500

Elective A : Ore Geology

Elective B: Applied Hydrogeology and Water Management

Elective C: Fuel Geology and Sedimentary Petrology

Elective D: Remote Sensing and GIS

The students opting for core elective on any one of the subjects A/B/C/D have to prepare a project on the basis of the work done in the field/laboratory for at least 2 weeks. The concerned student has to present his/her findings before the Teachers council and shall be evaluated by the Board of three internal examiners appointed by the Board of studies / Vice Chancellor. The viva shall be held by an external examiner appointed by the Board of Studies / Vice Chancellor.

The distribution of marks is as follows:

1. Report writing : 40

2. Presentation : 30

3. Viva Voce : 30

DETAILED SYLLABUS

1st semester

1AGLC1: Crystallography, Mineralogy and Mineral optics: 100 Marks & 4 Credits

Unit	Broad Division	Detail syllabus	Credit	Marks
I	Crystallography	Concept of lattice network, Bravais lattices, X-ray study of crystals, Crystal projection, Derivation of 32 classes by Hermann Mauguin system of crystal notation, Study of 4/m 3/m, 4 3m, 2/m 3, 4/m 2/m 2/m, 6/m 2/m 2/m 6 2 2, 32 2/m 2/m 2/m, 2/m and 1 classes 3 2/m,, Crystal imperfections.	1	25
II	Mineralogy - I	Structural classification of silicates, Physico-chemical and optical properties and occurrence of Silicate Mineral groups- Felspar, Felspathoid, Olivine, Garnet, Pyroxene, Amphibole, Mica and Silica groups	1	25
III	Mineralogy - II	Physico-chemical and optical properties and occurrence of Non-silicate mineral groups- Native elements, Oxides, Carbonates, Sulphides, Phosphates and Halides	1	25
IV	Mineral optics	Snell's law, Isotropism and anisotropism, double refraction, birefringence, interference colour, interference figure (uniaxial and biaxial). Extinction angle, pleochroism, twinning, dispersion	1	25

1AGLC2: Mineral Deposits: 100 Marks & 4 Credits

Unit	Broad Division	Detail syllabus	Credit	Marks
ı	Processes of Formation	Processes of formation of mineral deposits- magmatic concentration, hydrothermal, sedimentary, residual and mechanical concentration, Oxidation and Supergene enrichment, syngenetic remobilization, submarine volcanic exhalation. Classification of mineral deposits, Controls of ore localization.	1	25
II	Ore deposits	Mineralogy, Mode of occurrence, Origin and Indian distribution of the following ore deposits-Iron, Manganese, Chromium, Copper, Lead and Zinc, Gold and Aluminium.	1	25
III	Industrial mineral deposits	Minerals/Rocks used in cement, refractories, ceramics and fertilizer industries. Mode of occurrence, Genesis and Indian distribution of the following Industrial minerals – Mica, Asbestos, Graphite, Gypsum. Important industrial mineral deposits of India, Precious and Semi precious mineralstypes and characteristics	1	25
IV	Fuel Geology	Coal and Petroleum – their characters, mode of occurrence, Genesis and Indian distribution, Important coal and petroleum deposits of India, Radioactive mineral deposits of India, Macroscopic and Microscopic constituent of coal, Coal bed methane	1	25

1AGLC3: Applied Economic Geology, Mineral economics and Remote Sensing: 100 Marks & 4 Credits

Unit	Broad Division	Detail syllabus	Credit	Marks
I	Applied Economic Geology - I	Mineral Exploration: Principles, Geological exploration, Earth's gravity and magnetism, Geophysical exploration (Gravity, Magnetic, Electrical, seismic and radioactive), Geochemical exploration (path finder and indicator elements, dispersion patterns, geochemical anomaly, analytical methods and interpretation of soil, water, air, plant and rock and Geobotanical exploration. Mining Methods, Characters of ore minerals under reflected light,	1	25
II	Applied Economic Geology - II	Strategic, essential, critical minerals, renewable and non-renewable resources, National Mineral Policy, laws of sea, sustainable mineral development, sampling, assaying, ore reserve calculation	1	25
III	Remote Sensing - I	Air-borne remote sensing: Concepts and principles of aerial photography, Aerial photographs - Types, Scale, Stereoscopy, Photo mosaics, Photo elements and photo interpretation	1	25
IV	Remote Sensing - II	Space – borne remote sensing: Principles, Sensors, Orbits, False colour composite, Interpretation of satellite imagery, Introduction to Digital image processing, Digital Elevation Model, Indian remote sensing satellites, Applications of remote sensing in landform and land use mapping, Structural mapping, Mineral and Groundwater exploration, Elementary ideas on Geographic Information System and Global Positioning System	1	25

1AGLC4: Practicals corresponding to Theory Paper 1AGLC1: 100 Marks & 6 Credits

Broad Division	Detailed syllabus	Marks
Crystallography	Identification of crystal models as per theory, Stereographic Projection of crystals, Axial	20
	ratio determination.	
Mineralogy	Megascopic and Microscopic identification of rock forming minerals	40
Mineral optics	Determination of sign of elongation, Extinction angle, scheme of pleochroism, Order of	20
	interference colours, Optic sign determination by interference figure.	
Others	Lab. Records and vivavoce	10+10

1AGLC5: Practicals corresponding to Theory Paper 1AGLC2 and 1AGLC3: 100 Marks & 6 Credits

Broad Division	Detailed syllabus	Marks
Metallic deposits	Megascopic identification of metallic minerals, Microscopic identification of ore minerals and their textures	30
Industrial mineral deposits	Megascopic identification of nonmetallic minerals, Calculation of assay value and reserve	30
Remote Sensing	Study and Interpretation of Aerial photo and Satellite Imageries; Mapping with GPS.	20
Others	Laboratory records and Viva voce	20

2nd semester

2AGLC1: Igneous petrology, Sedimentary petrology and Basin analysis: 100 Marks & 4 Credits

Unit	Broad Division	Detail syllabus	Credit	Marks
I	Igneous Petrology - I	Concept of magma and its generation. Silicate-melt equilibrium. Phase diagrams – Binary: Eutectic, Peritectic and solid solution and Ternary (Ab-An-Di) and (Ab-Or-Si). Magmatic Differentiation, Assimilation, IUGS classification of igneous rocks	1	25
II	Igneous Petrology - II	Petrology and geotectonic evolution of granites, basalts, ophiolites, andesites and alkaline rocks. Petrology and Indian distribution of gabbro, kimberlite, anorthosites, carbonatites, lamprophyres	1	25
III	Sedimentary Petrology and Basin analysis - I	Texture of sedimentary rocks - size, spericity, roundness and fabric of clastic grains and their significance. Structure of sedimentary rocks – mechanical, chemical and organic and their significance. Sedimentary basins – origin and classification of sedimentary basins in the light of geosynclinal and plate tectonics concepts. Classification of sedimentary rocks. Classification of sandstones and limestones.	1	25
IV	Sedimentary Petrology and Basin analysis - II	Study of palaeocurrent and provenance. Sedimentary facies. Sedimentary environments and their classification; characteristic features of fluvial and marine environments, study of heavy minerals and their significance.	1	25

2AGLC2: Metamorphic petrology and Applied Geochemistry: 100 Marks & 4 Credits

Unit	Broad Division	Detail syllabus	Credit	Marks
1	Metamorphic	Metamorphic fabrics, Mineralogical phase rule, Concept of zones, Facies	1	25
	Petrology - I	and Grade in Metamorphism, Metamorphic Differentiation. Metasomatism,		
		Granitisation, Classification of metamorphic rocks.ACF, AKF and AFM		
		diagrams.		
П	Metamorphic	Progressive metamorphism of argillaceous and calcareous sediments and	1	25
	Petrology - II	basic igneous rocks. Ocean floor metamorphism, Cataclastic metamorphism.		
		Paired metamorphic belts. Retrograde metamorphism, Petrology of		
		important metamorphic rocks – Khondalites, Charnockites		
Ш	Applied	Earth in relation to the solar system, Cosmic abundance of the elements.	1	25
	Geochemistry -	Structure and composition of the earth. Primary geochemical differentiation		
	1	of the earth. Geochemical classification of elements, Isomorphism,		
		Polymorphism, Atomic substitution		
IV	Applied	Geochemical cycle, Distribution of trace and rare earth elements in igneous	1	25
	Geochemistry -	rocks, Petrography of lunar rocks and meteorites, Introduction to Isotope		
	II	Geochemistry		

2AGLC3: Applied hydrogeology and Engineering geology: 100 Marks & 4 Credits

Unit	Broad Division	Detail syllabus	Credit	Marks
I	Applied Hydrogeology - I	Distribution of water on and within the Earth's surface; hydrologic cycle. Hydrologic properties of water bearing materials- Porosity, Permeability, Transmissibility, Storativity, specific yield and specific retention. Types of water bearing formations- Aquifiers, Aquicludes, Aquitards and Aquifuge. Classification of aquifers.	1	25
II	Applied Hydrogeology - II	Darcy's law. Pumping tests and Interpretation of test data of simple aquifer situations- steady state flow of unconfined and confined aquifers. Groundwater provinces, Ground water exploration- Geological, Geophysical and remote sensing methods. Well drilling techniques. Quality of groundwater. Saline water intrusion in coastal aquifers	1	25
III	Engineering Geology - I	Site investigation techniques in engineering constructions. Engineering properties of rocks- Porosity, Density, hardness, compressive strength, Tensile strength, Shear strength, Modulus of deformation. Engineering properties of soils- Soil moisture, Grain size distribution and classification, Permeability, Shear strength, Deformation in soil. Earth quake resistant structures	1	25
IV	Engineering Geology - II	Building materials (road metals, building stones, concrete aggregate). Landslides and stability of slopes. Geotechnical considerations in dams and reservoirs and their environmental impact. Tunnels and Bridges: their geological considerations. Geotechnical case studies of major dam projects-Bhakra, Koyna, Hirakud and Balimela	1	25

2AGLC4: Practicals corresponding to Theory Paper 2AGLC1, Seminar: 100 Marks & 6 Credits

Broad Division	Detailed syllabus	Marks
Igneous Petrology	Megascopic and microscopic petrography of igneous rocks, calculation of norm and Niggli	30
	values.	
Sedimentary	Megascopic and microscopic petrography of sedimentary rocks. Drawing of histogram,	35
petrology and	frequency curve and cumulative frequency curve. Determination of mean, standard	
Basin analysis	deviation, skewness, kurtosis by graphical methods.	
Seminar	Seminar marks shall be given by 3 teachers of the department selected by the Teachers	15
	Council at the beginning of the Semester. The mark shall be forwarded to the	
	examiners(Internal and External) with the signature of all the three teachers with	
	countersignature of the Head of the Department at the time of the Practical examination	
Others	Laboratory records and viva voce	20

2AGLC5: Practicals corresponding to Theory Paper 2AGLC2 and 2AGLC3, Field report: 100 Marks & 6 Credits

Broad Division	Detailed syllabus	Marks
Metamorphic petrology	Megascopic and microscopic petrography of metamorphic rocks. ACF, AKF and AFM diagrams.	25
Geochemistry	Calculation of mineral formulae from chemical data	10
Hydrogeology	Analysis of Resistivity survey data, analysis and interpretation of bore hole logs. Water table contour maps, Determination of pH, conductance, total hardness of water samples,	20
Engineering Geology	Soil study, Geological problems in dams, Tunnels and Bridges. Engineering properties of rocks	15
Field report	Results of the field investigation to be submitted in form of a report	15
Others	Laboratory records and viva voce	15

3rd Semester

3AGLC1: Structural geology, Geodynamics and Geomorphology: 100 Marks & 4 Credits

Unit	Broad Division	Detail syllabus	Credit	Marks
1	Structural	Stress ellipsoid, Stress trajectories, Strain ellipsoid, Homogeneous and	1	25
	Geology - I	inhomogeneous strain. Mechanism and factors of rock deformation. Planar		
		and linear structures and their tectonic significance. Joints and their genetic		
		types. Salt domes. Unconformities		
П	Structural	Bases of fold classification. Classification of folds according to Fleuty, Ramsay	1	25
	Geology-II	and Turner-Weiss. Mechanism of folding. Superposition of folds. Classification		
		faults, Anderson and Hafner theories of faulting. Recognition of faults in the		
		field, Active faults and related topography		
Ш	Geodynamics	Principles of Plate tectonics. Midoceanic ridges, Continental drift, Seafloor	1	25
		spreading, Island arcs, Geodynamics of the Indian sub-continent, Himalayan		
		Orogeny.		
IV	Geomorphology	Geomorphic concepts and processes, Weathering and erosion, Erosion cycle,	1	25
		Theories of landform development. Coastal geomorphology. Geomorphology		
		of India. Geomorphic mapping, Slope analysis, Drainage analysis.		

3AGLC2: Paleontology, Applied Micropaleontology & Geological Oceanography: 100 marks & 4 Credits

Unit	Broad Division	Detail syllabus	Credit	Marks
1	Palaeontology -	Fossilization Processes (Taphonomy), Modes of preservation. Study of	1	25
	1	morphology, classification, evolution and extinction of Trilobites,		
		Brachiopods. Lamellibranchs, Gastropods and Cephalopods		
П	Palaeontology -	Study of morphology, classification and evolution of Echinoids and Corals.	1	25
	II	Concept of evolution. Evolution of horse, elephant and man. Evolution and		
		extinction of Dinosaurs; General study of fossil plants, Gondwana flora and its		
		significance.		
Ш	Applied	Types of microfossils, their separation and preparation for study. Application	1	25
	Micropalaeonto	of microfossil study in different fields with special reference to study of		
	logy	biostratigraphy and petroleum exploration. Study of morphology,		
		classification and ecology of foraminifers. Morphology of conodonts and		
		ostracods, Palynology		
IV	Geological	Scientific Ocean floor drilling and its major accomplishments; Temperature &	1	25
	Oceanography	Salinity distribution (Horizontal & Vertical) in Ocean waters; Dissolved gas in		
		Sea water; Oxygen Minimum Zones and Upwelling in Oceans; Biological-		
		Chemical-Physical interactions in Oceans; Surface & Deep Ocean Circulations		

3AGLC3: Stratigraphy, Palaeogeography and Quarternary Geology: 100 Marks & 4 Credits

Unit	Broad Division	Detail syllabus	Credit	Marks
I	Stratigraphy - I	Principles of Stratigraphy, Stratigraphic correlation. Code of stratigraphic nomenclature, Concepts of Sequence-, magneto-, seismic- and chemostratigraphy. Precambrian stratigraphy of India-Distribution of Archaean. Cuddapah and Vindhyan Group and detailed study of type areas and other important groups (Delhi, Chhatisgarh and Kurnool).	1	25
II	Stratigraphy - II	Distribution and detailed study of the type areas of Palaeozoic (Spiti and Kashmir), Mesozoic (Triassic of Spiti, Jurassic of Kutch and Cretaceous of Trichinopolly), Gondwana Supergroup :Associated flora & its Significance	1	25
III	Stratigraphy and Palaeogeograp hy	Tertiary (Assam), Siwalik Group, Deccantraps, Palaeoclimatic reconstruction, Paleogeography of India during Permo-carboniferous period, Triassic, Jurassic and Cretaceous Periods	1	25
IV	Quaternary Geology	Global sea level rise — past and future, Paleoclimatic reconstruction, quaternary deposits and land forms of India. Quaternary dating methods; Radiocarbon, Uranium Series, argon isotope; Pleistocene glaciations — Causes and effects, OSL	1	25

3AGLC4: Geostatistics and Computer application in Geology, Environmental geology, Medical Geology and Disaster management: 100 Marks & 4 Credits

Unit	Broad Division	Detailed syllabus	Credit	Marks
1	Geostatistics	Probability – concept, laws and application. Method of sampling. Frequency	1	25
	and Computer	distribution and frequency tables. Graphical representation of frequency data		
	application in	- histogram, frequency curve and cumulative frequency curve. Graphical		
	Geology - II	methods of determination of sample statistics - mean, standard deviation, skewness and kurtosis.		
II	Geostatistics and Computer application in Geology - II	Normal frequency distribution. Degrees of freedom and level of significance. Correlation coefficient. The t-test – equality of sample means and significance of correlation coefficient. Regression analysis. Application of computer in solving statistical problems in geology.	1	25
III	Environmental geology and Medical geology	Renewable and Non-renewable resources, Conservation of mineral resources, environmental impacts of mining, mineral exploitation and their management, sustainable development of minerals, Management of solid wastes including mining wastes, Fly ash, Radioactive wastes; Environmental protection- Legislative measures in India Problems of Fluorosis and arsenic poisoning in India – Causes and remedial measures	1	25
IV	Disaster management	Disaster Management: Concepts, Earthquake, cyclones and tsunamis, floods, landslide and their management.	1	25

3AGLC5: Practicals corresponding to Theory Papers: 100 Marks & 6 Credits

Broad Division	Detailed syllabus	Marks
Structural	Completion of outcrops. Interpretation of geological maps. Structural problems – thickness	25
Geology	and depth of strata, three-point problem, determination of true and apparent dips.	
	Stereographic projection – π and β diagrams. Plotting of line and planes, problems relating	
	to true and apparent dips, plunge and pitch, angle between planes and lines.	
Geomorphology	Contouring of land forms, Toposheet studies, Slope and drainage analysis, Morphometric	10
and Geotectonics	analysis	
Palaeontology	Identification of animal and plant fossils as stated above. Graphic representation of their	25
	stratigraphic interval. Arrangement of fossils in chronological order. Drawing and labeling	
	of fossils	
Stratigraphy	Stratigraphic assemblages – Identification and interpretation	10
Geostatistics	Related to the corresponding theory	15
Others	Laboratory records and Viva voce	15

4th Semester

Elective A-Ore Geology 4AGLCE(A) 4AGLCE1(A): Ore Geology

Unit	Broad Division	Detail syllabus	Credit	Marks
I	Ore genesis-A	Concept of mineral equilibria- homogenous and inhomogenous Thermodynamic principles in mineral formation Phase rule and its application, phase diagrams of binary (Fe-S and Cu-S) and ternary (Cu-Fe-S & Fe-Zn-s) systems. Eh – pH in natural environment; Eh-pH relationship with respect to iron and manganese in aqueous solution.	1	25
II	Ore genesis-B	Concepts of ore genesis: genesis related to magmatic, hydrothermalactivity, SEDEX, residual, sedimentation, metamorphism, bacteriogenic activity	1	25
III	Ore genesis- C	Ore bearing fluids- nature, source, transportation, depositional environment in terms of ion potential and Fugacity. Chloride and sulphides complexes	1	25
IV	Ore genesis-D	Geological thermometry, Fluid inclusion studies, ore deposits associated with plate boundaries.	1	25

4AGLCE2(A): Ore Geology

Unit	Broad Division	Detail syllabus	Credit	Marks
1	Ore deposits-A	Metallogenic epoch & province, Space and time distribution of ore	1	25
		deposits of India and World, Controls of ore localization,		
		Classification of mineral deposit.		
П	Ore deposits-B	Mineralogy, mode of occurrence, origin and Indian distribution of	1	25
		Fe, Mn, and Cr with special reference to Indian occurrences and		
		growth of industries.		
Ш	Ore Deposits-C	Mineralogy, mode of occurrence, origin and Indian distribution of	1	25
		Al, Cu, Pb & Zn with special reference to Indian occurrences and		
		growth of industries.		
IV	Ore Deposits- D	Mineralogy, mode of occurrence, origin and Indian distribution of	1	25
		Ni, Sn, Au and Ag		

4AGLCE3(A): Ore Geology

Unit	Broad Division	Detail syllabus	Credit	Marks
1	Exploration of	Methods of surface and sub surface exploration- Geological,	1	25
	Ore Deposits	geophysical, geochemical and geobotanical Sampling, assaying, ore		
		evaluation and reserve estimation. UNFC classification of reserves.		
П	Mineral	Ore beneficiation, Ore beneficiation practices adopted in Fe, Mn,	1	25
	processing	Al, Cr ore deposits, drilling, mining.		
Ш	Mineral	National mineral policy, strategic, critical and essential minerals	1	25
	Management	with special reference to India. Laws of sea. Management of		
		mineral resources and sustainable mineral development.		
IV	Mineral	Ore textures and industrial application of ore microscopy.	1	25
	characterization	Properties of ore minerals under ore microscope, paragenesis and		
		zoning.		

4AGLCE4(A): Ore Geology (Practical)

Related to	Chemical analysis of ores- Fe, Mn, Cu.	6	85
Theory	Mineralographic examination of ore minerals and etch test. Megascopic		
Papers	identification of oreassemblages. Genetic and paragenetic interpretation from megascopic examination of ore assemblages. Reserve calculation and assay problems. Study of X-raydiffractogram for mineral identification. Lab. Record, Field report and Viva voce		
	Seminar		15

4AGLCE5(A): Ore Geology (Project)

Project work	Report writing	6	40
	Presentation		30
	Viva Voce		30

Elective B- Applied Hydrogeology and Water Management 4AGLCE(B) 4AGLCE1(B): Applied Hydrogeology and Water Management

Unit	Broad Division	Detail syllabus	Credit	Marks
1	Occurrence of	Occurrence of groundwater-vertical zonation Geological formations,	1	25
	groundwater	Aquifers, springs and Thermal springs. Origin of groundwater,		
		Groundwater basins; Aquifer types components of hydrologic Cycle,		
		Hydrometeorology, Hydrographs.		
П	Hydrogeologi	Groundwater properties based on storage and movement, porosity and	1	25
	cal properties	permeability, Darcy's law, Transmissibility, specific yield, specific		
		retention, storage coefficient, specific capacity of wells. Field and		
		laboratory determination of porosity and hydraulic conductivity.		
Ш	Groundwater	Groundwater condition in rock types crystalline - volcanic, Carbonate,	1	25
	Occurrences	lithified sediments, fluvial deposits, coastal and aeolian deposits.		
	in various	Groundwater levels and its fluctuation, water table contour maps.		
	rocks	Elementary idea on barometric and tidal efficiencies.		
IV	Groundwater	Groundwater in different rocks and geomorphic terrain. Groundwater	1	25
	provinces	provinces of India and Odisha. Thermal springs of Odisha. Hydrology of		
		arid zone and coastal zones of India.		

4AGLCE2(B): Applied Hydrogeology and Water Management

Unit	Broad Division	Detail syllabus	Credit	Marks
1	Well	Design and construction of wells, yield tests and selection of pumpsets.	1	25
	hydrolics-I	Maintenance and development of wells.		
П	Well	Unidirectional and radial flow of groundwater, general groundwater	1	25
	hydrolics-II	flow equations, pumping test, steady and unsteady flow, Theis, Theim,		
		Jacobs and Walton's equations.		
Ш	Groundwater	Groundwater problems related to foundation work, canals, Mining and	1	25
	extraction	tunnels. Problems of over-exploitation, artificial recharge and rain water		
	and problems	harvesting.		
IV	Groundwater	Groundwater estimation, Groundwater budgeting, groundwater	1	25
	resources and	balance, groundwater Legislation. Management of coastal aquifers of		
	management	Odisha.		

4AGLCE3(B): Applied Hydrogeology and Water Management

Unit	Broad Division	Detail syllabus	Credit	Marks
1	Groundwater	Quality of groundwater, Reporting of groundwater quality data,	1	25
	quality	Maps and diagrams, Groundwater pollution, Suitability of		
		groundwater for various uses, Fluoride problem in Odisha. Fluoride		
		and Arsenic problems in India.		
Ш	Groundwater basin	Groundwater basin management and conjuctive use, saline water	1	25
	management	intrusion into coastal aquifers.		
Ш	Groundwater	Groundwater exploration:- Geological, Geophysical and remote	1	25
	exploration	sensing methods, preparation of hydrogeomophic and lineament		
		maps and their role in interpretation of groundwater.		
IV	Pollution of	Surface water and ground water pollution and their treatment,	1	25
	groundwater	Environmental impact of groundwater pollution and extraction of		
		groundwater. Diseases due to various chemical constituents & trace		
		metals in groundwater and their mitigation measures.		

4AGLCE4(B): Applied Hydrogeology and Water Management (Practical)

Determination of pH, conductance, turbidity, IDS, D.O., acidity alkalinity, Ca, Mg, Fluoride,	6	85
bicarbonate, TH., Determination of porosity and permeability. Data interpretation of resistivity	ļ	
survey. Chemical data plotting, water table contour maps. Numerical problems related to	ļ	
various hydrologic properties. Hydrogeological interpretation by Remote Sensing method.	ļ	
Seminar		15

4AGLCE5(B): Applied Hydrogeology and Water Management (Project)

Project work	Report writing	6	40
	Presentation		30
	Viva Voce		30

<u>Elective C: Fuel Geology and Sedimentary Petrology</u> 4AGLCE1(C): Fuel Geology and Sedimentary Petrology

Unit	Broad Division	Detail syllabus	Credit	Marks
1	Coal Geology - I	Types of coal, Origin of coal, composition of coal (chemical and maceral	1	25
		composition), coal as plant debris-Lignin, protein, fats, wax etc., genetic		
		relationship of plant constituents H/C Vr.O/C diagram. Methods of coal		
		mining.		
II	Coal Geology -	Coal petrography and its application in carbonization and hydrogenation	1	25
	Ш	(Liquefaction). Fires in underground mines and combating methods.		
		Environmental pollution due to coal mining.		
Ш	Coal Geology -	Behavior of coal on heating-DTA and Differential Thermo gravimetric	1	25
	Ш	(DTG) analysis, plasticity measurement, Infrared analysis, Crossing point		
		temperature analysis of coal, Spontaneous combustion of coals-		
		mechanism and preventive measures.		
IV	Coal Geology -	Geological geographical distribution of Indian coal fields, Study of	1	25
	IV	important coal and lignite deposits of India: Gondwana coal fields: Jharia,		
		Raniganj, Talchir and Ib valley coalfields, Tertiary coalfields: Coalfields of		
		Assam & Meghalaya, Neyveli lignite deposits.		

4AGLCE2(C): Fuel Geology and Sedimentary Petrology

Unit	Broad Division	Detail syllabus	Credit	Marks
1	Petroleum	Origin, migration and entrapment of Petroleum, Characteristics of source	1	25
	Geology-I	and reservoir rocks, structural, stratigraphic and combination traps,		
		Techniques of Petroleum exploration.		
П	Petroleum	Geographical and geological distribution of oil and natural gas in India,	1	25
	Geology-II	Study of important Onshore and offshore petroliferous basins: Assam oil		
		fields, Cambay basin, Krishna-Godavari basin, Cauvery basin and Bombay		
		High.		
Ш	Nuclear	Mineralogy and Geochemistry of radioactive minerals, Instrumental	1	25
	Geology-I	techniques of detection and measurement of radioactivity, Radioactive		
		methods of exploration, Utilization of radioisotopes.		
IV	Nuclear	Classification of Uranium deposits, Thorium resources of India. Challenges	1	25
	Geology-II	and Prospects of Uranium Industry, Study of important radioactive		
		minerals deposits in India with respect to mineralogy, mode of occurrence		
		and origin, Beneficiation methods, Radioactive waste management.		

4AGLCE3(C): Fuel Geology and Sedimentary Petrology

		<u> </u>		
Unit	Broad Division	Detail syllabus	Credit	Marks
I	Sedimentary	Field techniques for study of Sedimentary Rocks- Mapping, palaeocurrent	1	25
	Petrology - I	data collection and analysis, study of sedimentary structures, palaeo-		
		hydraulics, interpretation of fluvial channels.		
П	Sedimentary	Study of sedimentary textures and their geological significance, Heavy	1	25
	Petrology - II	mineral analysis and significance, sub-surface correlation of sedimentary		
		deposits,		
III	Sedimentary	Preparation of Isopach and Facies maps, Sequence stratigraphy, Methods	1	25
	Petrology - III	of sediment transportation by water, estimation of bed load and		
		suspension load. Basin classification and description, sedimentary basins		
		formation - concepts. Sedimentary basins of India		
IV	Sedimentary	Characteristics of provenance, classification of Sandstone, limestone,	1	25
	Petrology - IV	conglomerate, Sedimentary environment and facies, Walthers Law		

4AGLCE4(C): Fuel Geology and Sedimentary Petrology (Practical)

Practical	Megascopic and microscopic petrography of sedimentary rocks. Rock assemblage and their	85
subjects	environmental interpretation. Modal analysis. Size analysis, Heavy mineral analysis, Palaeocurrent	
	analysis. Preparation of isopach maps, lithofacies maps. Construction of vertical sections showing	
	sedimentary cycles and their correlations.	
	Megascopic and microscopic study of coals. Proximate analysis of coals. Coal petrography, Problems	
	related to coal and petroleum	
	Seminar	15

4AGLCE5(C): Fuel Geology and Sedimentary Petrology (Project)

Project work	Report writing	6	40
	Presentation		30
	Viva Voce		30

Elective D Remote Sensing and GIS 4AGLCE1(D): Remote Sensing and GIS

Unit	Broad Division	Detail syllabus	Credit	Marks
1	Principles of	History of remote sensing, Benefits of remote sensing over conventional	1	25
	Remote Sensing - I	methods of resource survey, components of remote sensing system, Global and		
		Indian remote sensing satellites. Electromagnetic radiation(EMR), Spectral		
		bands, Atmospheric interactions with EMR, Interactions of EMR with Earth's		
		surface materials- rocks, minerals, soils, water, vegetation .		
Ш	Principles of	Remote sensing platforms- types and uses. Sensors-fundamental properties and	1	25
	Remote Sensing - II	functions. Sensor parameters- spatial, spectral, temporal and radiometric		
		resolution, types of sensors and basic features of different types of sensors in		
		different satellites- Landsat, SPOT, IRS etc.		
Ш	Aerial Remote	Basic requirements of aerial photography, planning for photography, Factors	1	25
	Sensing -I	influencing image quality, Aerial cameras, Flight direction, Flying height, Forward		
		and lateral overlaps, Time of photography, Information recorded on aerial		
		photographs, preparation of photo index, Aerial mosaics.		
IV	Aerial Remote	Principles of aerial photography, types of aerial photographs, characteristics	1	25
	Sensing -II	features of aerial photography- scale, vertical exaggeration, drift and crab.		

4AGLCE2(D): Remote Sensing and GIS

Unit	Broad Division	Detail syllabus	Credit	Marks
	Photogrammetry	Geometry of Aerial photographs, Stereoscopic parallax, Measuring	1	25
		instruments-parallax bar & its use. Stereoscopy, Pseudoscopy, stereoscopic		
		exaggeration, Estimation of slope and dip.		
Ш	Aerial	Photo elements, visual image interpretation- general procedure,	1	25
	Photointerpretation-	interpretation of aerial photograph and satellite imagery, false colour		
	Techniques	composite (FCC), stereoscopes, conditions for stereoscopic vision, digital		
		image processing.		
Ш	Aerial	Basic concepts of geomorphology, climatic influence on geomorphic process,	1	25
	Photointerpretation-	Geomorphic cycles: Fluvial, Arid, Glacial, coastal and volcanic. Interpretation		
	Geomorphology	of various landforms, Structural and tectonic landforms.		
IV	Aerial	Geotechnical analysis, Vegetation analysis, Landuse analysis, Landform	1	25
	Photointerpretations -	analysis, Drainage analysis, Convergence of evidence, Lithological		
	Geology	interpretation of Igneous, Sedimentary and Metamorphic rock,		
		interpretation of structural features – folds, faults and unconformity.		

4AGLCE3(D): Remote Sensing and GIS

Unit	Broad Division	Detail syllabus	Credit	Marks
I	Remote Sensing Application I	Application of remote sensing techniques in geological and geomorphological mapping, landuse and landcover studies, terrain evaluation, mineral exploration and groundwater resources evaluation, petroleum exploration	1	25
II	Remote Sensing Application II	Application of remote sensing techniques in agricultural management, forest mapping and management, irrigation and watershed management, engineering site evaluation for dam, reservoir, tunnel and highways	1	25
III	Remote Sensing Application III	Application of remote sensing in environmental hazard managements- floods, landslide and coastal erosion, soil mapping, waste land mapping, sustainable development studies	1	25
IV	GIS and GPS	Fundamentals of geographic information system (GIS), data structure of GIS, Raster and vector data, Representation of geographical entities by raster and vector methods. Application of GIS in various fields of geology. Elementary knowledge on Global Positioning System(GPS)	1	25

4AGLCE4(D): Remote Sensing and GIS (Practical) 6 credits and 100 marks

Practical	Marking of principal points. Determination of scale. Tracing of details from aerial photos and imageries.	85
subjects	Stereoscopic test, Use of pocket and mirror stereoscopes, use of parallax bar. Measurement of heights and	
	determination of slopes from photos. Estimation of dip of beds. Study of topographic maps to identify typical	
	landforms. Preparation of geologic, geomorphic and land use maps from aerial photos and imageries.	
	Characterisation of typical geologic formations of Odisha i.e. alluvial deposits, laterite deposits, Eastern Ghats,	
	Gondwana rocks etc. Lab. Records, Field reports/Project report and viva-voce.	
	Seminar	15

4AGLCE5(D): Fuel Geology and Sedimentary Petrology (Project)

Project work	Report writing	6	40
	Presentation		30
	Viva Voce		30

ALLIED ELECTIVES

(Open to students of the Dept. as well as of Allied disciplines)

1	3AGLAE1	Mineral resources of Odisha	Credit 4	Marks 100
2	3AGLAE2	Stratigraphy of India	Credit 4	Marks 100

3AGLAE1 - Mineral Resources of Odisha – 4CH – 100 Marks

Unit	Title of the course
Unit – I	Mineral wealth of Odisha – Identifying characteristics of minerals
Unit – II	Process of Formation – Magmatic concentration, Hydrothermal deposits,
	Oxidation and Supergene enrichment, Residual concentration.
Unit – III	Use and distribution of Iron ore, Manganese ore, Chromite, Bauxite,
	Coal, Platinum
Unit – IV	Construction materials, Limestone, Gem occurrence of Odisha, Beach
	sand deposits

3AGLAE2 – **Stratigraphy** – 4CH – 100 Marks

Unit	Title of the course
Unit – I	Geological time scale, definition of Stratigraphy, Principle of stratigraphy
Unit – II	Precambrian Stratigraphy of India-Cudapah, Vindhyan and Dharwar
	Supergroup
Unit – III	Paleozoic Stratigraphy-Study of Paleozoic (Spiti of Kashmir), Gondwana
	Supergroup
Unit – IV	Stratigraphy of Odisha

FREE ELECTIVES

(Open to students of all departments)

1.	3AGLFE 1	Disaster management	Credit 4	Marks 100
2.	3AGLFE 2	Mineral resources of India	Credit 4	Marks 100
3.	3AGLFE 3	Geo-environmental Studies	Credit 4	Marks 100

3AGLFE 1 - Disaster Management – 4CH – 100 Marks

Unit	Title of the course
Unit – I	Introduction to disaster, type of disasters: natural, man made technologies
Unit – II	Concept of Disaster management, pre, relative & post disaster management
Unit – III	Flood, cyclone, drought, landslide.
Unit – IV	Earthquake, Tsunami, heat wave, cold wave

3AGLFE 2 - Mineral Resources of India- 4CH - 100 Marks

Unit	Title of the course
Unit – I	Mineral wealth of Odisha – Identifying characteristics of minerals
Unit – II	Process of Formation – Magmatic concentration, Hydrothermal deposits,
	Oxidation and Supergene enrichment, Residual concentration.
Unit – III	Use and distribution of Iron ore, Manganese ore, Chromite, Bauxite, Coal,
	Platinum
Unit – IV	Construction materials, Limestone, Gem occurrence of Odisha, Beach sand
	deposits

3AGLFE 3 - Geo-environmental studies – 4CH – 100 Marks

Unit	Title of the course
Unit – I	Impact of mining on environment (water, soil and air), Acid mine drainage
Unit – II	Global warming, Sea level rise, Green House Gases, Ozone depletion, Acid rain
Unit – III	Solid wastes and their management, Liquid waste and its management
Unit – IV	Hydrologic cycle, Vertical distribution of ground water, water pollution-Surface
	and sub surface; cause and management